圆的面积教案【最新12篇】
【前言】本文是热心网友“ytrv13”分享的圆的面积教案【最新12篇】,以供借鉴。
教学目标:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
教具准备:
多媒体课件二套,圆片。
一。情景导入
1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)
师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。
(板书:圆的面积)
2、师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)
师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?
生:这堂课我们要学习圆的面积是怎样求出来的。
生:学生圆的面积公式。
师:你们知道圆的面积公式后,你们还想到什么问题?
生:圆的面积公式根据什么推导出来的。
师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。
(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)
二、动手操作,探索新知
1、 猜测(每项用课件出示)
师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?
生:不等。
师:为什么?
生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。
师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?
生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。
师:圆的面积和正方形比较谁的面积大?
生:圆的面积大
师:可以观察出圆的面积范围在2r2-4r2
(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)
2、 回忆旧知,
师:圆能不能直接用面积单位支量呢?为什么?
生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。
师:该怎么办呢?(教室沉默)
师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)
师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?
生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)
师:这个办法很好。那么把圆形转化成什么图形呢?
[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]
3、动手操作
(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)
师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)
(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?
生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)
师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示
(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)
学生汇报讨论结果。生答师继续演示课件。
生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长宽
所以圆的面积=周长的一半半径
S=r
S=r2
师:结合公式S=r2,说说圆的面积是怎样推导出来的?
(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)
生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。
因为 三角形的面积=底高2
所以 圆的面积=周长的半径的4倍
S=4r2
S=r2
师:我们用三角形也推出了圆的'面积公式 S=r2 。同学们还有其它图形来验证吗?
(5)生:我们把圆转化成梯形来验证。(课件演示)
生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。
因为梯形的面积=(上底+下底)高2
所以圆的面积=周长的一半半径的2倍
S=2r2
S=r2 用梯形的面积
3、小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)
我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。
唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!
圆的面积必需要具备哪些条件?
[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]
(三)课后巩固
1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。
(照应了开头,又学练习了面积的计算。)
2、 根据下面条件求出圆的面积
r =5分米 d =3米
3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直平方米,求树的横截面的面积?
(用学到的知识来解决生活中的问题,培养学生的应用能力)
(四)师:这堂课大家学到了什么?有什么收获?
(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)
[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]
教学目标:
1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:培养综合运用知识的能力。
教学难点:培养综合运用知识的能力。
教学过程:
一、复习。
1、口算:
2
267
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积吗?
二、新课。
1、教学练习十六第3题
小刚量得一棵树干的周长是,这棵树干的横截面积是多少?
已知:c=厘米s=r2
r:()
==
=20(厘米)=1256(平方厘米)
答:这棵树干的横截面积1256平方厘米。
3、教学环形面积。
(1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米r=2厘米求:s=?
622
==
=(平方厘米)=(平方厘米)
-=(平方厘米)
第二种解法:(62-22)=(平方厘米)
(2)小结:环形的面积计算公式:
S=R2-r2或S=(R2-r2)
(3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、巩固练习。
1、学校有个圆形花坛,周长是米,花坛的面积是多少?
选择正确算式
A、(2)
B、()
C、
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积S=r2
已知直径求面积S=()2
已知周长求面积S=()2
(3)环形面积:S=(R2-r2)
四、作业
课本P70第4、6、7题。
教学追记:
本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。
教学目标
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备
教学重点和难点:
圆面积的计算公式推导。
教学准备:
圆形纸片、剪刀、多媒体课件等。
教学过程
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)
教学过程:
一、开门见山,揭示课题
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)
二、第一次探究,明确思路,体会“转化”的.数学思想方法
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)
怎样让扇形和三角形的面积接近一些?
现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)
四、第三次探究,深化思维,推导公式
刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)
五、解决问题
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)
(教师组织交流。)
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)
六、小结
【第一课时】 圆的面积
一、 教学目标
1.知识与技能
理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。
2.过程与方法
引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。
3.情感态度与价值观
通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。
二、教学重点
正确计算圆的面积。
三、教学难点
圆面积公式的推导。
四、教学具准备
课件、学具。
五、教学过程
(一)情境导入
1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?
今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)
2.看到今天的课题,你都想知道什么?
3.什么是圆的面积?在哪?摸摸看。
(学生摸手中圆形纸片,并用手指出圆的面积)
过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的.推导过程。
(二)复习旧知识
1.你还记得我们已经学过了哪些图形的面积求法吗?
(生:长方形、正方形、平行四边形、三角形、梯形)
2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)
3.问:其它图形呢?(学生简要叙述其他面积推导过程)
4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。
(三)学习新课
1.请你猜猜看,圆的面积公式应该怎么推导出来?
(生:转化成已知的图形进行推导)
2.怎么转化?想想办法。任意的分成几份行吗?
(生:沿圆的直径将圆平均分成若干份)
3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:
(1)以组为单位,先摆图形。
(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。
(3)有问题及时记录,以便讨论。
(学生动手拼摆并贴在白纸上)
4.你们遇到什么问题了吗?
(生:边不是直的,是弯的)。
5.谁能帮助他解决这个问题?
(学生谈自己的想法)
6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)
【可使用圆的图片27】
7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?
(学生谈自己的想法)
8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。
(学生谈自己的想法)
9.汇报不同推导方法:
转化成长方形的:
长方形的面积=a × b 圆的面积=c×r 2
=π r × r
=π r 2
转化成平行四边形的:
平行四边形的面积= a × h
圆的面积= c × r 2
=π r × r
=π r 2
转化成三角形的:
三角形的面积= 1× a × h 2
圆的面积= 1c×4r 24
c× r 2 =
=π r 2
转化成梯形的: 梯形面积=1×(a+b)× h 2
15c3c×(+)×2r
1c××2r 22
c× r 2圆形面积= ==
=π r 2
10.观察一下,这些推导过程有什么相同的地方?
(生:都是将圆转化成已知图形去推导的)
11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。
现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)
(四)巩固练习
1.求圆的面积(单位:厘米)
r=3 答案:s=(平方厘米)
d=20答案:s=314(平方厘米)
c=答案:s=1256(平方厘米)
2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?
答案:×22 =(平方米)
3.判断
(1)直径是2厘米的圆,它的面积是平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。 ()
4.听故事解题:
巴依老爷买来一群羊。
巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。
阿凡提说:“老爷,这个长方形羊圈太小了!”
巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”
阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”
同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。
(五)小结
今天这节课你有什么收获?
【第二课时】 圆环面积
一、 教学目标
1.知识与技能
掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法
在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观
进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、*牛牛范文*教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会
想 会
新 旧
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的'圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。
教学目的:
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的.实际问题。
教学重点:理解和掌握圆面积的计算公式的推导过程
教学难点:圆面积计算公式的推导
教学过程:
一 、创设情境,提出问题
( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)
生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?
二、引导探究,构建模型
A:启发猜想
师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)
B:分组实验,发现模型
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。
三、 应用知识,拓展思维
1师:要求圆的面积必须知道什么?
2 运用公式计算面积
A完成羊吃草的面积
B完成课后“做一做”
C一个圆的直径是10厘米,它的面积是多少平方厘米?
D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
3应用知识解决身边的实际问题(知识应用)
下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是元,学校一共要付多少钱才能完成?
四 归纳总结,完善认知
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
教学目标
1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的'面积公式.
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
教学重点
圆面积的公式推导的过程。
教学难点
理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。
教具、学具准备
有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。
教学过程
一、创设情境,提出问题
【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?
揭示课题:圆的面积
二、充分感知,理解圆的面积的意义。
提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的.方式感受一下圆的面积,告诉大家圆的面积指的是什么?
课件显示:圆所占平面的大小叫做圆的面积。
你认为圆面积的大小和什么有关?
三、自主探究,合作交流。
1、引导转化:
回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?
2、动手尝试探索。
(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?
(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?
如果我们再继续等分下去,拼成的图形会怎么样?
小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。
你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?
3、学生合作探究,推导公式
教材说明
教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。
这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力
。 教学建议
1.这部分内容可以用2课时进行教学,教学圆的面积公式的.推导、例3、例4、例5,完成练习二十四。
2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。
3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的'面积计算公式推导的过程和方法会有不同之处。
4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。
在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。
5.教学例3时,列成式子42后,要向学生指出,必须先算平方,后算乘法。
6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:1;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。
7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:
①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;
②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;
③计算圆面积用面积单位,计算圆周长用长度单位。
8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。
9.关于练习二十四中一些习题的教学建议。
第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。
第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。
第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。
第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。
第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-=(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。
第15*题,是求组合图形面积的练习。
教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的'边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。
教学目标
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重、难点:圆面积公式的推导与运用。
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片
教学过程
一、设疑导入,激发动机
1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)
3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
二、动手操作,探索新知
1.猜想、引导,确定方法
师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?
(学生可能会想到长方形、平行四边形、三角形、梯形等。)
师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?
(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)
2.动手操作,尝试探究
师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)
师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)
3.课件演示,突破难点
师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:
(1)圆与有近似的长方形有什么关系?
(2)把圆16等份和32等份后,拼成的图形有什么区别?
(3)如果等分份数仅需增加,结果会怎样?
师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
4.观察比较,导出公式
师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?
学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2
(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)
5.尝试运用
出示例3,读题列式,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
2.完成第116页做一做的第1题。
3.看书质疑。
三、运用新知,解决问题
1.求下面各圆的面积,只列式不计算。
直径50分米
2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?
3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、课堂作业
第118页的第3题和第4题。
教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。
难点:圆面积公式的推导。
准备:圆形纸片
一. 创设情境。
S:同学们,请看这里?(展示课件动画)
S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)
S:小马还有一个问题,我的`活动范围占地多大?这个多大指的是圆
的什么量呢?
X:是圆的面积。
S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)
二. 探索交流,学习新知。
1. 出示电子课本。
S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。
X1:公式。
X2:转化成学过的图形来计算。
S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)
X:长方形,正方形,三角形,平行四边形,梯形等等。
(单击课件)
S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。
S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的.电子课本(电子课本)
S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了
吗?
X:准备好了。
S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?
X:(学生自由回答)
S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。
(课件演示)
2. 讲解课件。
4份时S问:这个像是咱们以前学过的图形吗?
X:不像。
S:不像没关系,咱们继续分,再分成8份,这次呢?
X:有点像平行四边形了。
S:继续分。(演示到32份)
S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)
S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。
X:长方形。
S:到底是长方形还是平行四边形。
S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?
X:长方形。
(板书:长方形)
S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。
3. 电子课本P68
S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?
S:请大家注意看我的课件演示。(讲解)
板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2
=2π
2r*r
=πr*r
2 =πr
2即 S=πr
S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?
X:半径。
S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?
S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?
X:半径。
学生先做题,再用课件演示答案。
三. 拓展练习。
1. 回答(尽量不要动笔)。
2. 计算( m2)
S= πr2
2 = ×5
= ×5×5
=×25
= (m2)
四. 回顾总结。
谁愿意和大家分享你的学习成果?(学生自己总结)
老师补充:1.化圆为方。
2. S= πr2
3.计算圆面积的必要条件是什么(半径)
板书:
1. 化圆为方。
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
=(厘米)=
=(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是(102)?。()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是平方米。(栓绳处不计算在内)()
(4)面积:62=12=()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
222+22
r=2cm=4=+4
=(平方厘米)=(cm)
3、一个圆的周长是米,它的面积是多少:
已知:C=米求:S=?
r=(2)S=r2
=4(米)=42
=(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是分米,这个环形的面积是多少平方分米?
已知:R=7厘米=分米r=分米求:S=?
S环=(R2-r2)
(2-2)
=
=536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:2=(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:=10(m)
半径:102=5(m)
面积:52=(m2)
(3)比较:长方形面积:正方形面积:圆面积:m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
第一课时
教学内容
圆的面积
教材第67、第68页的内容。
教学要求
1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.培养学生运用转化的思想解决问题的能力。
重点难点
重点:掌握圆的.面积的计算公式,能够正确地计算圆的面积。
难点:理解圆的面积公式的推导过程。
教具学具
实物投影,各种图形的纸片。
教学过程
一导入
1.我们学过哪些平面图形的面积公式?
2.长方形、平行四边形和三角形的面积公式分别是什么?
3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。
二教学实施
1.明确圆的面积的概念。
(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?
学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。
(2)圆的大小是由什么决定的?
(3)展示由“曲”变“直”的渐变图。
引导学生逐层观察圆周曲线的变化情况,把圆等分的.份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。
2.学生动手操作,推导圆的面积公式。
为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,
(1)指导学生动手摆学具,并思考几个问题:
你摆的是什么图形?
你摆的图形的面积与圆的面积有什么关系?
所摆图形的各部分相当于圆的什么?
你如何推导出圆的面积?
(2)学生动手摆学具,然后发言。
拼成长方形:
老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。
出示教材第67页上面的图加以说明。
拼成的近似长方形的长和宽与圆的各部分有什么关系?
从图中可以看出圆的半径是r,长方形的长是πr,宽是r。
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。
3.利用公式计算圆的面积。
出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?
指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。
板书:20÷2=10(m)
×102
=×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
老师强调指出:列出算式后,要先算平方,再与π相乘。
三课堂作业新设计
1.直接写出得数。
22= 32= 42= 52= 62= 72=
82= 92= 102= == =
2.求下面各圆的面积。
3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?
4.一个圆桌桌面的直径是米。它的面积是多少平方米?
四思维训练
计算阴影部分的面积。(单位:分米)参考答案
课堂作业新设计
平方分米平方分米1256平方厘米平方米
3.平方分米
平方米
思维训练
平方分米
板书设计
圆的面积
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
20÷2=10(m)
×102
=×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
备课参考教材与学情分析
本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
课堂设计说明
1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。
2.教学时,强调知识迁移的过程。
平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。
3.组织学生观察猜想。
先观察再猜想的'方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。