您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 教学 > 正文

八年级上册数学教学设计人教版【汇编10篇】

2023-10-16 11:43:07教学

八年级上册数学教学设计人教版【汇编10篇】

八年级上册数学教学设计人教版 篇1

  一、 说教材

  1、 教材的地位和作用

《中位数与众数》是北师大版《数学》八年级上册第8章第2节内容。《课程标准》对本节内容的要求是:“根据具体问题,能选择合适的统计量表示数据的集中程度。”“根据统计结果做出合理的判断和预测,体会统计对于决策的作用,能比较清晰地表达自己的观点,并进行交流。”“认识到统 计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。”中位数与众数同平均数一样是描述一组数据的集中趋势的数据代表,是帮助学生学会用数据说基本概念,在此之前,教材已经安排了第1 节《平均数》,本节内容是继《平均数》学习之后的后续内容,既是对前面所学知识的深化与拓展,又是联系现实生活,培养学生应用数学意识和质疑习惯的良好素材。教材有意识地安排了一些以表格、统计图等方式呈现数据,这样既加强了知识间的联系,巩固了学生对各种图表信息的获取能力,同时也增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识。

  2、教学目标

  知识与技能:

(1)掌握中位数和众数的概念;能根据所给信息正确求出中位数和众数。同时注意平均数、中位数和众数各自适用的范围。

(2)能结合具体的情境体会平均数、中位数和众数三者的差别,能初步选择恰当的数据代表对数据做出自己的评判。

(3)能从表格统计图等参考资料中获取信息,并能求出相关数据的平均数、中位数和众数。

  过程与方法:在数据的处理中,理解平均数、中位数和众数区别与联系,掌握处理问题的方法。

  情感态度与价值观:感受数学知识在生活中的实际价值,体验数学来源于生活,又服务于生活的特质,唤起学生学数学的兴趣。

  3、重点与难点

  重点: 掌握中位数和众数的概念,并会正确 计算一组数据的中位数和众数。

  难点: 在具体的情境中选择恰当的数据代表并作出自己的判断。

  4、对教材的处理:

  为了创设一种引人入胜的教学情境,充分挖掘趣味因素,限度的吸引学生的课堂投入,在引入课题时将引例以课本剧的形式呈现;为了体现数学更贴近学生生活实际又增加了“问题1”;为更好地突出重点在“合作探究”中,增加了“概念学习” 1、中位数、2、众数,同时都各配以两个小练习,引出了相应的点评以完成对两概念的补充说明;为了内化知识形成框架,将:“议一议”作为课堂小结处理

  二、 说学生

  学生在小学五年级下时已学习过中位数、众数的概念,并能够解决简单的数学问题和实际问题,认识到了两个统计量在现实生活中的实际价值。前两节又学习了平均数,具备了一定的数据处理、描述和分析能力。而且八年级学生身心一进一步成熟,具备了一定的自学能力和分析判断能力。

  三、说教学法

  1、说教法

  课前将学生分为六个组,按成绩由低到高的顺序编上1~5号。根据教材内容和八年级学生的认知特点,结合班级的实际情况,首先在课前将教学内容以“预习学案”的形式印发给学生,要求学生先独立自学完成,再通过小组交流合作学习完成。重点、难点问题课上分组展示解决。教师调控课堂及时追问与点评。在课前准备中,要求分组调查八年级各班男同学的运动鞋号码。

  2、说学法

  基于以上分析,学生以在自学教材、查阅相关参考书籍的基础上,独立自主完成学案为主,以课前小组内合作交流为辅进行。最后分组展示突破重难点。内化知识、训练思维、培养能力。

八年级上册数学教学设计人教版 篇2

  教学目标

  1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.

  教学重点:等边三角形的性质和判定方法.

  教学难点:等边三角形性质的应用

  教学过程

  I创设情境,提出问题

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

  II例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

  2. 已知:如右图,P、Q是△ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  3. P56页练习1、2

  III课堂小结:1.等腰三角形和性质;等腰三角形的条件

  V布置作业: 页习题第ll题.

  2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

八年级上册数学教学设计人教版 篇3

  备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

  为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

  情境设置:

  汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

  设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

  为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

  一般式变形:(其中k均不为0)

  通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

  为加深难度,我又补充了几个练习:

  1、为何值时,为反比例函数?

  2是的反比例函数,是的正比例函数,则与成什么关系?

  关于课堂教学:

  由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

  在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

  对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

  而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

  经验感想:

  1、课前认真准备,对授课效果的影响是不容忽视的。

  2、教师的精神状态直接影响学生的精神状态。

  3、数学教学一定要重概念,抓本质。

  4、课堂上要注重学生情感,表情,可适当调整教学深度。

八年级上册数学教学设计人教版 篇4

  教学目标

  知识与技能

  掌握多边形内角和公式及外角和定理,并能应用.

  过程与方法

  1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;

  2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.

  情感态度价值观

  通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.

  重点

  多种方法探索多边形内角和公式

  难点

  多边形内角和公式的推导

  教学流程安排

  活动流程

  活动内容和目的

  活动1学生自主探索四边形内角和

  活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法

  活动3探索n边形内角和公式

  活动4师生共同研究递推法确定n边形内角和公式

  活动5多边形内角和公式的应用

  活动6小结

  作业

  从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.

  加深对转化思想方法的理解, 训练发散思维、培养创新能力.

  通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.

  学生提高动手实操能力、突破“添”的思维局限

  综合运用新旧知识解决问题.

  回顾本节内容,培养学生的归纳概括能力.

  反思总结,巩固提高.

  课前准备

  教具

  学具

  补充材料

  教师用三角尺

  剪刀

  复印材料

  三角形纸片

  教学过程设计

  问题与情景

  师生行为

  设计意图

[活动1、2]

  问题1.三角形的内角和是多少?

  与形状有关吗?

  问题2.正方形、长方形的内角和是多少?

  由此你能猜想任意凸四边形内角和吗?

  动脑筋、想办法,说明你的猜想是正确的.

  问题3添加辅助线的目的是什么,方法有没有什么规律呢?

  学生回答:

  三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.

  学生先独立探究,再小组交流讨论.

  教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.

  学生汇报结果.

①过一个顶点画对角线1条,得到2个三角

  形,内角和为2×180°;

②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;

③若在四边形内部任取一点,如图,也可以得到相应的结论;

④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)

  内角和为3×180°-180°;

⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;

  教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.

  教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.

  通过回忆三角形的内角和,有助于后续问题的解决.

  从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.

  通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.

  通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.

[活动3]

  问题4怎样求n边形的内角和?(n是大于等于3的整数)

  学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.

  特点:内角和都是180°的整数倍.

  通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.

[活动4]

  每名同学发一张三角形纸片

  问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发

《多边形的内角和》公开课生了怎样的变化

  问题6由四边形得到五边形呢?

  依此类推能否猜想n边形内角和公式

  将三角形去掉一个角可以得到四边形,如图7,四边形内角和为

  180°+2×180°-180°=2×180°.

  每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°

(严谨的证明应在学习数学归纳法后)

  学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决

[活动5]

  知道了凸多边形的内角和,它可以解决哪些问题呢?

  问题6:六边形的外角和等于多少?

  n边形外角和是多少?

  学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到

  6×180°-(6-2)×180°=360°

  学生思考,回答.

  n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.

  利用内角和求外角和,巩固了内角和公式.

  如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维

  练习

  一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .

  练习.解:(n-2)180=150n,n=12;

  或360÷(180-150)=12(利用外角和)

  150°×12=1800°.

  巩固内角和公式,外角和定理.

[活动5]

  小结

  下面请同学们总结一下这节课你有哪些收获.

  学生自己小结,老师再总结.

  1. 多边形内角和公式(n-2)180°,外角和是360°;

  2. 由特殊到一般的数学方法、转化思想.

  学会总结,培养归纳概括能力.

  作业:

  课后思考题.

  一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?

  当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?

  多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.

  作业:

  解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

  x=(n-2)180-1125

∵0<x<180< p="">

∴0<(n-2)180-1125<180

  解得:<n<< p="">

∵n是整数,

∴n=9.

  x=(9-2)180-1125=135

  注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?

  解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

∵n是整数,

∴45+x是180的倍数.

  又∵0<x<180< p="">

∴45+x=180,x=135,n=9

  还可以根据内角和的特点,先求出内角和.

  解法3.设此多边形的内角和为x°,依题意:1125<x<1125+180< p="">

  即:180×6+45<x<180×7+45< p="">

∵x是多边形内角和的度数

∴x是180的倍数

∴x=180×7=1260 边数=7+2=9,

  这个内角=1260°-1125°=135°

  解法4(极值法).设这是n边形,这个内角为x°,则0<x<180,依题意:(n-2)180=1125+x< p="">

  令x=0,得:n=,令x=180,得:n=

∴<n< 其余同解法1.

八年级上册数学教学设计人教版 篇5

  一、内容和内容解析

  1.内容

  三角形中相关元素的概念、按边分类及三角形的三边关系。

  2.内容解析

  三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

  本节课的教学重点:三角形中的相关概念和三角形三边关系。

  本节课的教学难点:三角形的三边关系。

  二、目标和目标解析

  1.教学目标

  (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。

  (2)理解并且灵活应用三角形三边关系。

  2.教学目标解析

  (1)结合具体图形,识三角形的概念及其基本元素。

  (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。

  (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。

  三、教学问题诊断分析

  在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。

  四、教学过程设计

  1.创设情境,提出问题

  问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。

  师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解。

  【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。

  2.抽象概括,形成概念

  动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。

  师生活动:

  三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。

  补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法。

  师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡。

  【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。

  3.概念辨析,应用巩固

  如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。

  1.以AB为一边的三角形有哪些?

  2.以∠D为一个内角的三角形有哪些?

  3.以E为一个顶点的三角形有哪些?

  4.说出ΔBCD的三个角。

  师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。

  4.拓广延伸,探究分类

  我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。

  师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。

八年级上册数学教学设计人教版 篇6

  一、创设情景,明确目标

  多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  多边形的定义及有关概念

  活动一:阅读教材P19。

  展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

  小组讨论:结合具体图形说出多边形的边、内角、外角?

  反思小结:多边形的定义及相关概念。

  针对训练:见《学生用书》相应部分

  多边形的对角线

  活动二:(1)十边形的对角线有35条。

  (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

  展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

  反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

  小组讨论:如何灵活运用多边形对角线条数的规律解题?

  针对训练:见《学生用书》相应部分

  正多边形的有关概念

  活动二:阅读教材P20。

  展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

  小组讨论:判断一个多边形是否是正多边形的条件?

  反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  本节学习的数学知识是:

  1、多边形、多边形的外角,多边形的对角线。

  2、凸凹多边形的概念。

  五、达标检测,反思目标

  1、下列叙述正确的是(D)

  A、每条边都相等的多边形是正多边形

  B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

  C、每个角都相等的多边形叫正多边形

  D、每条边、每个角都相等的多边形叫正多边形

  2、小学学过的下列图形中不可能是正多边形的是(D)

  A、三角形B。正方形C。四边形D。梯形

  3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的`边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

  4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

八年级上册数学教学设计人教版 篇7

  一、教学目标:

  1、加深对加权平均数的理解

  2、会根据频数分布表求加权平均数,从而解决一些实际问题

  3、会用计算器求加权平均数的值

  二、重点、难点和难点的突破方法:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  3、难点的突破方法:

  首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

  三、例习题的意图分析

  1、教材P140探究栏目的意图。

  (1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

  (2)、加深了对“权”意义的`理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

  2、教材P140的思考的意图。

  (1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

  (2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

  3、P141利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

  四、课堂引入

  采用教材原有的引入问题,设计的几个问题如下:

  (1)、请同学读P140探究问题,依据统计表可以读出哪些信息

  (2)、这里的组中值指什么,它是怎样确定的?

  (3)、第二组数据的频数5指什么呢?

  (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

  五、随堂练习

  1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

  所用时间t(分钟)人数

  0

  0<≤ 6

  20

  30

  40

  50

  (1)、第二组数据的组中值是多少?

  (2)、求该班学生平均每天做数学作业所用时间

  2、某班40名学生身高情况如下图,

  请计算该班学生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、课后练习:

  1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

  部门A B C D E F G

  人数1 1 2 4 2 2 5

  每人创得利润20 5 2

  该公司每人所创年利润的平均数是多少万元?

  2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?

  年龄频数

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

  答案:1.约万元2.约29岁分贝

八年级上册数学教学设计人教版 篇8

  教学目标:

  1.知道负整数指数幂=(a≠0,n是正整数).

  2.掌握整数指数幂的运算性质.

  3.会用科学计数法表示小于1的数.

  教学重点:

  掌握整数指数幂的运算性质.

  难点:

  会用科学计数法表示小于1的数.

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

  教学过程:

  一、课堂引入

  1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:am?an = am+n (m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n); (5)商的乘方:()n = (n是正整数);

  2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3.你还记得1纳米=10?9米,即1纳米=米吗?

  4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

  二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.

  三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如: = ×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如 = ×10?2, = ×10?3, = ×10?4,以此发现其中的规律,从而有 = ×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级上册数学教学设计人教版 篇9

  一、 学习方式

  本节课巧妙地设置数学活动情境,以数学活动、自主实践为主线,通过学生之间的互相交流,师生之间的交往,亲身感受到数学知识与自己生活的紧密联系,从而激发兴趣,增加体验,培养能力,让学生在活动中通过欣赏、观察、操作、交流体验图案设计。因此,本节课以“主动、探究、合作”为特征的学习方式来学习,关键组织丰富多彩的实践创设活动,引导学生尝试探索与成功,能够有效地提高学生对数学的学习兴趣,并培养学生用数学的意识,发展创新的能力。

  二、学习任务分析

  本课教材所处位置,是在刚认识三角形及图形的全等后,它使学生经历从现实世界中抽象出几何模型和运用所学内容解决实际问题的过程。丰富的情景、图片力求使学生能体会数学与生活的密切联系。我决定通过问题创设、实践活动、交流报告等环节的实践活动,真切体验一个学数学、用数学的过程。

  三、学习起点能力

  学习之前,学生已掌握了三角形的有关概念,了解三边之间的关系、三角形的内角和以及图形的全等,并有小学和上学期简单图案设计的几何知识做基础。而从本节内容上讲,构想图案设计相当困难,需要几何知识和技巧。因此学生这节课是对以前知识的综合运用,从而对知识复习和联系。

  四、教学目标

  知识与技能:

  经历用全等图形设计图案的过程,进一步理解图形全等的概念,提高对全等的认识。

  过程与方法:

  能欣赏他人设计的图案,培养审美情趣;利用全等图形进行简单的图案设计,体验对基本图形的“割”与“补”。

  情感态度与价值观:

  通过设计活动,积累数学活动经验,发展有条理地思考和表达能力;进一步建立空间观念和审美观;发展创造力,丰富想象力,培养动手能力。

  五、教学重点、难点

  重点:经历用全等图形设计图案的过程,进一步理解图形全等的概念。

  难点:能欣赏他人设计的图案或利用全等图形进行简单的图案设计。

  六、教学过程

  为大家提供的八年级上册数学图案设计教学计划就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。

八年级上册数学教学设计人教版 篇10

  课型:新授课

  学习目标:

  1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.

  2.学会运用数学知识分析解决实际问题,体会数学的价值。

  重点:列一元二次方程解应用题

  难点:学会分析问题中的等量关系

  一、知识回顾

  列方程解应用题的一般步骤是①②③④⑤⑥

  二、自学教材、合作探究

  1、自学教材45页,学习分析“探究一”中的数量关系

  设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:

  2、解这个方程,得

  3、想一想:三轮传染后有多少人患流感?四轮呢?

  三、检查自学效果

  1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )

  A.8人B.9人C.10人D.11人

  2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )

  A. B. C. D.

  四、指导学生应用

  某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)

  解:设每轮感染中平均每一台电脑会感染台电脑,1分

  4分

  解之得6分

  8分

  答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。

  五、巩固训练:

  1.一个多边形的对角线有9条,则这个多边形的边数是( ).

  A.6 C.8

  2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人

  

  3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )

  A.x(x+1)=240 B.x(x-1)=240

  C.2x(x+1)=240 D.x(x+1)=240

  4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。

  5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。

  6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

  反思:2题和4题列方程时为何不一样呢?

  六、归纳小结:

  1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。

  2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。

  七、效果测评:

  1.解下列方程。(1)+10x+21=0(2)-x=1

  2.两个相邻的偶数的积是240,求这两个偶数。

  3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?