您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

六年级数学下册教案【汇总11篇】

2023-08-16 22:22:42综合

六年级数学下册教案【汇总11篇】

六年级数学下册教案

六年级数学下册教案 篇1

  设计说明

“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是平方米,高是米,这个水箱能装水多少立方米?

(1)引导学生独立解决问题。

(2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

(1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

  杯子的底面积/cm2

  10

  15

  20

  30

  60

  水的高度/cm

  30

  20

  15

  10

  5

①表中有哪两种量?

②水的高度是怎样随着杯子底面积的大小变化而变化的?

③相对应的杯子的底面积与水的高度的乘积分别是多少?

(2)学生思考后在小组内交流。

(3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

(4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

六年级数学下册教案 篇2

教学内容:

  教材第10页

教学目标:

  1、知道纳税的含义和重要意义,理解应纳税额和税率的含义。学会根据具体的税率计算税款。

  2、在计算税率的过程中,加深学生对社会现象的理解,提高解决问题的能力。

  3、增强学生的法制意识,使每个学生都知道每个公民都有依法纳税的义务。

教学重点:

  掌握税额的计算方法。

教学难点:

  理解税收时的专有名词,理解税率的含义。

教法学法:

  教法:引导阅读、例题讲解、练习巩固。

  学法:课前预习、独立思考、合作交流。

教学准备:

  多媒体课件

教学过程:

(一)创设情境,引入新课

  1、(课件出示教材第10页主题图)同学们,我们的祖国正在蓬勃发展中,为了让祖国更强大,人民生活更美好,国家投入了大量的人力、物力来进行建设,你知道这些钱是哪来的呢?

  2. 渗透法制教育:

(1)《宪法》第五十六条规定中华人民共和国公民有依照法律纳税的'义务。

(2)《中华人民共和国税收征收管理法》第四条规定法律、行政法规规定负有纳税义务的单位和个人为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。

(3) 《中华人民共和国个人所得税法》

  第一条 在中国境内有住所,或者无住所而在境内居住满一年的人,从中国境内和境外取得的所得,依照本法缴纳个人所得税。

【设计意图】通过图片展示,课前信息的收集和交流,引导学生理解依法纳税的意义和重要性。渗透法制教育,引导学生学法、知法、懂法、用法。

(二)结合情境,探索新知

  1.理解“税率”的含义(自学教材第10页)

(1)纳税的意义。

(2)根据自己的理解说说什么是纳税?什么是应纳税额?什么是税率?

(3)介绍自己所了解的纳税项目并进行简单介绍。

  2.结合实例,进一步理解概念,并解决问题。

(1)课件出示教材第10页例3。

  一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?

①读题,说说“营业额的5%”是什么意思?

  这里的5%就是指的是税率。

②学生独立解答。

③集体交流,明确在这种情况下有如下关系成立:

  营业额×税率=营业税。

(2)练习:出示教材第10页“做一做”。

  李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?

①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?

②学生独立解决问题。

③集体交流反馈,知道在这种情况下有如下关系成立:

(总收入-免征收部分)×税率=个人所得税

(3)对比两道题,了解税收的算法各不相同,要根据实际情况进行计算。

(三)巩固练习

  1、基本练习课件出示教材第14页练习二第6、10两题。

(1)李老师为某杂志审稿,得到300元审稿费。为此她需要按照3%的税率缴纳个人所得税,她应缴纳个人所得税多少元?

(2)小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余部分要按20%的税率缴税。这笔劳务费用一共要缴税多少元?

①学生独立完成。

②集体交流反馈。

③对比两题,看看两种交税方式有什么不同,想想计算时要注意什么。

(四)课堂总结,课外拓展。

  1.今天这节课我们学了什么?在解决这类问题时我们要注意什么?

  2、课后调查:

  问一问爸爸妈妈每月收入是否需要缴纳个人所得税?了解我国对个人所得税的税收规定。

  板书

  税率

  应纳税额与各种收入的比率叫做税率。

  应纳税额=营业额×营业税税率

  例3:30×5%=(万元)

六年级数学下册教案 篇3

  一、教材总体分析:

  这册教材包括下面地些内容:百分数的应用、圆柱和圆锥、比例、确定位置、正反比例、解决问题的策略、统计以及小学六年来所学数学内容的总复习。本册教材的这些内容是在前几册的基础上按照完成小学数学的全部教学任务安排的,着重使学生认识一些常见的立体图形,掌握它们的体积等计算方法,进一步发展空间观念;进一步形成统计的观念,掌握用扇形统计图表示数据整理结果的方法,提高依据统计数据的分析、预测、判断能力;理解比例、正比例、反比例的概念,加深认识一些常见的数量关系,会用比例知识解答比较容易的应用题。然后把小学数学的主要内容加以系统的整理和复习,巩固所学的数学知识,使学生能够综合运用所学的数学知识解决比较简单的实际问题;结合新的教学内容与系统的整理和复习,进一步发展思维能力,培养思维品质,进行思想品德教育。

  教学重点:本册教材中的圆柱和圆锥、比例都是小学数学的重要内容。首先,认识圆柱和圆锥的特征,掌握圆柱和圆锥的一些计算,既可以为进一步学习其他形体的表面积和体积及其计算打好基础,进一步发展空间观念,也可以增强解决问题的策略和方法,逐步增强学生收集、处理信息的意识和能力。最后学习好比例的知识,不仅可以增强学生用数学方法处理数学问题的能力,而且也使学生获得初步的函数观念,为进一步学习相关知识作初步的准备。因此,让学生认识这些内容的概念,学会应用这些概念、方法和计算解决一些实际问题,是教学的重点。

  教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。

  二、教学目的要求:

  1、使学生在经历观察、操作等活动的过程中认识圆柱和圆锥的特征,能正确地判断圆柱和圆锥,理解、掌握圆柱的表面积、圆柱和圆锥体积的计算方法,会正确地进行计算。

  2、。让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。

  3、让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和基本性质,会解比例;认识比例尺,会看比例尺,会进行比例尺的有关计算;理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,理解用比例关系解应用题的方法,学会用比例知识解答比较容易的应用题。

  4、使学生通过系统的复习,巩固和加深理解小学阶段所学的数学知识,更好地培养比较合理的、灵活的计算能力,进一步提高综合应用数学知识和方法解释日常生活现象、解释简单实际问题的水平,进一步用不同方式、从不同角度探索解决问题方法的能力,发展创新意识、实践能力,思维能力和空间观念。

  三、学生情况简析

  本班共有学生76人,大部分都是农村出来的小孩,从学生的摸底考试成绩分析,学生的基础的知识、概念、定义掌握比较牢固,口算、笔算验算及脱式计算较好。但粗心大意的还比较多,灵活性不够,应用能力不够强。但总的来说大部分学生对数学比较感兴趣,接受能力较强,学习态度较端正;也有部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的.学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的.能力,以提高成绩。

  本班学困生也不少。这些同学自觉性不够,缺乏刻苦钻研的精神,总想偷懒,不做作业或者抄别人的作业。今后首先还是加强学习习惯培养,如学前的自习、课后的复习等。在书写上还要继续提高要求,只有让学生在认真书写的基础上才有可能认真思考。

  其次,这学期分数的计算占了极大一块内容,所以培养他们的计算能力是关键。另外百分数应用题是本学期的重点,在教学中加强数学数量关系的分析。让学生学会分析,学会审题,提高解题能力。最后在激发学生学习兴趣方面多寻找方法,使他们乐学,愿学。努力提高他们的学习成绩。

  四、方法与措施

  1、认真做好教学“常规”工作

  ⑴走进新课程,决胜新课程。认真搞好课堂教学研究工作,找课堂要质量。充分利用学生熟悉、感兴趣的和富有现实意义的素材吸引学生,让学生主动参与到各种数学活动中来,提高学习效率,激发学习兴趣,增强学习信心。提倡学法的多样性,关注学生的个人体验。

  ⑵认真研读教材,明确本册课本的编写意图,注意老师之间的交流与切磋,循序渐进地采取有效、易懂教学策略,让每个学生有所发展。

  ⑶切实使用好与课本配套的教学辅助用书、教具、学具;尽可能制作好课件。

  ⑷加强计算教学。计算是本册教材的重点,一方面引导学生探索并理解基本的计算方法,另一方面也通过相应的练习,帮助学生形成必要的计算技能,同时注意教材之间的衔接,对内容进行有机的整合,提高解决实际问题的能力。

  ⑸介绍课外数学知识与方法,开拓学生的视野,增强学生学习兴趣。

  2、认真做好培优补差工作。

  ⑴开展帮教结对活动,与后进生家长经常联系,及时反映学校里的学习情况,促使其提高成绩,帮助他们树立学习的信心与决心。

  ⑵注意讲练结合,使学生理解知识间的内在联系,课后多关心学困生,他们的作业尽量面批。

  ⑶每堂课设计分层教学目标,较难的问题让优等生回答,以开发他们的智力。课后设计选做题,让优等生做,进一步培养他们的思维能力。

  ⑷利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发,自己找出解决问题的方法,体验学习数学的快乐。

六年级数学下册教案 篇4

  【教学目标】

  1.知识与技能:

  (1)让学生参与系统、全面整理知识的过程,梳理本单元的所学知识,引导学生沟通知识间的联系,构建知识网络。

  (2)通过本单元知识的复习,比较熟练掌握比例知识,并能解决一些实际问题。

  2.过程与方法:通过回忆、讨论和交流,结合练习,加深对所学知识的理解,提高掌握水平。

  3. 情感态度与价值观:在解决问题的过程中进一步体会比例知识与现实生活的密切联系。

  【教学重点】

  整理本单元知识,沟通知识间的联系。

  【教学难点】

  能灵活运用正、反比例的意义,解决实际问题。

  【教学准备】

  回家先整理本单元知识,作好交流的准备。

  【教学过程】

  一、谈话引入,揭示课题

  教师:我们已学完了本单元知识,今天来进行“整理与复习”。

  板书课题:整理与复习

  二、梳理单元知识,形成知识网络

  1.方法回顾

  (1)以前我们是怎样整理单元知识的?

  (2)你们昨天回家是这样整理的.吗?

  (3)四人小组进行交流。

  2.学生汇报交流

  (1)抽2位汇报整理结果。

  (2)根据学生的整理,大家提出建议并进行修改。

  (3)展示教师整理的结果,说出整理思路(展示)。

  比例比例意义、基本性质、解比例

  正比例意义[X=(一定)]

  应用

  反比例意义[X=(一定)]

  应用

  3.教师小结整理知识的情况

  三、复习本单元知识

  1.完成练习十四第1题

  这两面国旗的长和宽的比,是否可以组成比例?

  如果可以组成比例,把组成的比例写出来,并指出这个比例的内项和外项(生齐练)。

  教师:通过前面两个题的复习,你能说说什么叫做比?什么叫做比例?比和比例有什么区别?

  在这里使学生明白比表示两个数,有两项;比例表示两个比相等,有四项。

  (2)完成练习十四第3题。

  教师:什么叫做解比例?

  学生在练习本上练习,指名板演,学生练习后讲评。

  2.正、反比例关系的判断

  (1)判断下面各题中两种量是否成比例。如果成比例,成什么比例?

  ①正方形的边长与周长。

  ②行驶一段路程,车轮的直径与车轮转过的转数。

  ③=5X,和X。

  ④X=24,和X。

  (2)说出下列各组中的三种量在什么条件下能组成什么比例关系。

  ①速度,时间,路程。

  ②汽车每次运货吨数,运货的次数和运货的总吨数。

  ③三角形的底、高和面积。

  (3)说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?

  梳理判断两种量是否成正(反)比例的思考步骤。

  ①先找出两种相关联的量和一个定量。

  ②根据两种相关联的量之间的数量关系,列出关系。

  ③根据正、反比例的意义,判断比例关系。

  (4)用比例知识解决下面的问题(练习十四第6题)。

  ①学校举行方阵团体操表演,排成5列需要90人,排成24列,需要多少人?

  ②学校举行方阵团体操表演,如果每列16人,要排27列,如果每列18人,要排多少列?

  教师:说一说,用比例知识解答应用题的关键是什么?解题的步骤有哪些?注意什么问题?

  1.设所求问题为X。

  2.判断题中的两个相关联的量是否成比例关系及成什么比例关系。

  3.列出比例式。

  4.解比例,验算,写答语。

  教师:用比例知识解答应用题的关键是正确判断题中两种相关联的量成什么比例关系,所以解题时要认真审题,做出正确判断。

  四、拓展应用练习

  (1)指导学生完成练习十四第9题。

  学生独立完成,教师巡视,集体评议。

  教师:航程和相对应的飞行时间的比值表示什么?成什么比例?为什么?

  教师:用图像把它们的变化规律表示出来。

  教师:观察图像有什么特点?

  使学生认识到:图像是一条直线。从这个图像可以直观看到航程和相对应的飞行时间的变化情况,航程增加,所需飞行时间也随着增加,航程减少,所需飞行时间也随着减少。

  教师:观察图像,估计飞行20xx千米需要多少时间?

  教师:根据图像估一下,7时大约飞行多少千米?

  学生回答,教师可以通过小黑板同步显示。

  五、教学小结

  今天我们一起进行了正、反比例这一单元的整理与复习,你有什么收获?还有哪些不明白的?

  六、作业布置

  完成练习十四第2、4、7、8、10、11题

六年级数学下册教案 篇5

  设计说明

  1、立足于学生已有的知识经验,借助旧知展开教学。

  本设计充分利用“黄豆营养成分”这一情境,对教材内容略做调整,通过让学生自己提出问题并解决问题的活动方式,自然引出“求一个数的百分之几是多少,用乘法计算”这一新知,调动学生已有的知识储备,与分数乘法应用题作比较,体会两种问题的共同特征,以实现新旧知识的自然过渡。

  2、渗透数学思想,促进学生对数学本质的探究。

  在对一个数乘百分数的算法的`探究中,当学生发现可以将百分数转化成分数和小数来计算时,我向学生提出了“将新知识转化成学过的知识来解决问题”是学习数学的好方法这一理念,这既能对学生的学习方法进行指导,也能对学生进行数学思想的渗透。一节好的数学课,不仅要求教师完美地将数学知识呈现给学生,更重要的是让学生从数学学习中获得有价值的思想方法,这些在学生的后续学习中会用到,数学课的魅力应该体现在对学生思想的启迪上。

  课前准备

  教师准备,PPT课件

  学生准备,收集有关食物营养含量的信息

  教学过程

  ⊙创设情境,激趣导入

  1、创设情境。

  师:(手里拿一把黄豆)请同学们估一估,这些黄豆大约有多少克?(约250g)

  师:你们知道黄豆中含有哪些营养成分吗?(蛋白质、脂肪、碳水化合物等)

  师:你们的.想法和营养学家检测出来的结果是一样的,营养专家还检测出了有关数据,让我们一起来看一看吧!

  课件出示:黄豆中的蛋白质含量约占36%,脂肪含量约占18%,碳水化合物含量约占25%。

  师:你能从中发现哪些数学信息?

  2、引入新课。

  师:你们知道我手中的这些黄豆含有多少克蛋白质吗?这节课我们就来解决有关蛋白质含量的问题。(板书课题:营养含量)

  设计意图:教师通过手拿黄豆的情境,结合课件,让学生了解到原来黄豆含有这么多有营养的物质。教学从生活实际出发,激发学生的学习兴趣,让学生在现实情境中体会和理解数学,发现生活中的数学问题。

  1、解决蛋白质含量的问题,应该如何列式?

  (1)师:我们已经收集到了很多关于黄豆营养含量的问题,你们能利用收集到的信息,设计一个求蛋白质含量的问题吗?

  (学生提取有用信息,编写题目:黄豆中的蛋白质含量约占36%,在250g黄豆中,蛋白质约有多少克)

  (2)师:下面请同学们独立列出算式解决这个问题,要注意解释清楚为什么要这样列式。

  学生独立思考,列式并汇报交流。

  ①你能试着用画图法来理解吗?学生试着画图。

  通过画图我们知道,求蛋白质约有多少克,就是求250g的36%是多少。

  ②学生试着列式:250×36%。

  ③列式依据:“求一个数的几分之几是多少,用乘法计算”,这道题是求250的36%是多少,所以也要用乘法计算。(36%化成分数是,这道题也可以理解为“求250的是多少”,所以用乘法计算)

  2、计算蛋白质含量,学习百分数化成小数、分数的方法。

  (1)师:你们有办法解决吗?请同学们以250×36%为研究对象,4人一组展开交流,共同商量解决的办法,并将计算过程写在练习本上。

  (2)学生交流并展示学习成果。

  方法一:把百分数化成分数计算。

  36%==250×36%=250×=90(g)

  方法二:把百分数化成小数计算。

  36%= 250×36%=250×=90(g)

  (3)方法总结:将新知识与旧知识联系起来,将新知识转化成我们已经学过的数学知识来解答,这是我们解决数学问题的好方法。

六年级数学下册教案 篇6

  教学目标:

  通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。

  通过例2的复习进一步掌握求稍复杂的平均数问题的方法。

  通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。

  教学过程:

  复均数。

  出示例1

  问:要求七个班的平均人数,该怎样算?让学生自己算出结果。

  想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。

  通过计算让学生总结出求平均数问题的计算方法。

  出示例2

  学生想:要求五年级平均每人做多少个,必须先求出( )和( )

  让学生自己列式解答。

  让学生总结求较复杂平均数问题的计算方法。

  完成137页的“做一做”

  复习统计表

  出示137页的例题。

  让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。

  完成138页的“做一做”

  第二课时

  复习统计图

  教学目标:

  通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。

  教学过程:

  复习

  回答

  你学过哪几种统计图?

  出示某电子仪器一厂和二厂在三个方面的统计图。

  回答四个问题

  从折线统计图中可以看出,哪个厂的产值增长和快?

  从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多?

  从扇形统计图中可以看出,哪个厂的外销产品占销售总数的百分比大?

  综合上面的分析,你认为哪个厂的生产搞得好?为什么?

  引导学生把三种统计图的特点和作用进行概括和总结。

  让学生看书或出示140页三种统计图的特点和作用表。

六年级数学下册教案 篇7

  新人教版六年级下册数学第二单元百分数(二)《折扣》教案设计

  教学目标:

  1.让学生感受数学与生活的联系。

  2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

  3.明确折扣的含义,能熟练地把折扣写成分数、百分数。正确解答有关折扣的实际问题。

  教学重点:

  会解答有关折扣的实际问题。

  教学难点:

  合理、灵活地选择方法,解答有关折扣的实际问题。

  教学准备:课件、计算器

  一、导入新课:

  圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

  二、在生活情境中,讲授新知:

  1.教学折扣的含义,会把折扣改写成百分数。

  刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

  你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

  ①大衣,原价:1000元,现价:700元。

  ②围巾,原价:100元,现价:70元。

  ③铅笔盒,原价:10元,现价:?

  ④橡皮,原价:1元,现价:?

  动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

  仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

  讨论,找规律:

  A、学生动手操作、计算,并在计算或讨论中发现规律。

  B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。

  归纳,得定义:

  A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

  B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?( “几折”是就是十分之几,也就是百分之几十)

  练习:

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  ④九二折是十分之( ),改写成百分数是( )。

  2.运用折扣含义解决实际问题。

  例1:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

  (1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

  (2)学生试做,讲评。

  3、巩固练习:

  (1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  A、打九折怎么理解?是以谁为单位“1”?

  B、学生试做,讲评。

  (2)判断:

  ① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

  ② 一件上衣现在打八折出售,就是说比原价降低10%。( )

  (3)完成课本中P8“做一做”练习题。

六年级数学下册教案 篇8

  教学目标:

  1.复习整本书所学的图形和几何知识,巩固和加深对所学知识的理解,沟通知识各部分之间的内在联系。

  2.提高学生解决问题的能力和空间想象力。

  3.感受数学与生活的紧密联系,培养学生对数学的热爱。

  教学重点:

  复习整理“图形与几何”的知识,巩固对所学内容的理解,提高解题能力。

  教学难点:

  培养学生的空间观念和想象力,提高解决问题的能力。

  教学过程:

  第一,进口

  老师:同学们,我们今天要复习的内容和我们的日常生活息息相关。首先,想想我们在“图形与几何”这一节中学到了什么知识。

  学生可能会说

  我们所学的平面图形包括矩形、正方形、三角形、平行四边形、梯形包围的图形,以及曲线包围的图形;mdash圆是一个轴对称图形,有许多对称轴。

  我知道圆心决定圆的位置,半径决定圆的大小。一个圆有无数的.直径和无数的半径;在同一个圆中,所有直径相等,所有半径相等。

  我们进一步学会了观察物体,可以画出从前面、左边和上面看到的形状,知道观察的范围和距离有关。helliphellip

  老师:学生们讲得很好。相信只要你注意观察,努力学习,你会有更多的新发现。

  设计意图:引导学生复习需要复习的相关知识点,让学生对这部分内容形成感性认识,在脑海中呈现相关表征,逐步构建知识体系。

  二、流程

  老师:我们来说说“圆”在生活中的应用。

  生1:元在生活中有很多应用。轮子做成圆形是因为圆心到圆上任意一点的距离相等,所以轮子在平面上滚动很平稳。

  2:年出生的学生在观看表演时会自动形成一个圆圈,因为每个观众(圆圈上的点)和表演者(圆圈的中心)之间的距离相等。helliphellip

  老师:圈子在生活中应用广泛。我们还学习了圆的周长和面积。你还记得周长公式和面积是怎么得出的吗?告诉学生小组中公式的推导过程。

  学生在小组里讨论交流圆的周长和面积公式的推导过程,教师巡视了解情况。

  师:谁来给大家讲一讲?

  学生可能会说

  我们测量了一些圆的周长和直径,然后求出周长除以直径的.商,发现圆的周长总是直径的3倍多一些,知道了这个固定值就是圆周率,用字母π表示,最后总结出了圆的周长公式C=πd或C=2πr。

  在推导圆的面积公式时,我们把圆形纸片平均分成了若干份,然后把这些小扇形拼成了近似的平行四边形。平行四边形的面积相当于圆的面积,平行四边形的底相当于圆的周长的一半,平行四边形的高相当于圆的半径,由平行四边形的面积=底×高得出圆的面积=πr×r,即S=πr2。

  师:讲得很好。除了关于圆的知识,我们还学习了观察物体,你能完成下面的练习吗?(课件出示:教材第100页“独立思考”第3题图)

  学生独立解答,教师巡视了解情况。

  教师组织学生交流汇报,重点引导学生说说自己的好办法。

  师:观察物体时,观察的范围是怎样变化的?

  生:观察的范围随着观察点、观察角度的变化而变化。

  师:你能结合生活中的观察范围变化的实际例子说一说吗?在小组里交流一下。

  学生在小组内交流,教师巡视了解情况。

  选取有代表性的学生交流汇报。

  设计意图:在对相关知识点进行复习整理后,及时让学生结合生活举出事例,趁热打铁进行针对性的巩固,随时检查学生的掌握情况,调整下一步教学内容。

  三、总结

  师:同学们,今天我们复习了“图形与几何”,但是知识的学习与应用是无止境的,在今后的生活和学习中,只要你们努力,相信就能掌握更多的知识。

  设计意图:以呼吁的口号结束,倡导学生不要死学知识,而应活用。

六年级数学下册教案 篇9

  教学内容:根据方向和距离,在图上绘出物体的距离

  教学目标:

  1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。

  2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。

  3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

  教学重、难点:根据方向和距离,绘制平面示意图。

  教学过程:

  一、复习引入

  合作绘图、练习巩固

  目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。

(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。

(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。

  1、出示学校的录相或图片

  问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?

  出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。

  2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?

  3、小组汇报完成平面图绘制的计划,教师进行梳理:

(1)绘制平面图的方法:

  先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。

(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。

  4、小组活动,绘制平面图。

  5、展示各组绘制的平面图,集体进行评议。

(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。

  订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

  教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

(2)比较各个平面图,为什么有的图大,有的图小?

  小结:1厘米表示的大小不同,图的大小也不同。

  二、练习:

  1、完成书上习题21页3、4题并订正。

  2、在纸上设计小区,并说明各个建建筑的位置。

  老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等。

  教后记:

“位置”的教学内容是第一学段相应教学内容的扩展和提高。学生在低年段已经学习了如何根据行、列确定物体的位置,并通过中年级“位置与方向”的学习,知道了在平面内可以根据两个条件确定物体的位置。本课在此基础上,让学生学习用数对表示具体情境中物体的位置,进一步提升学生的已有经验,培养学生的空间观念。

  单元小结

  通过学习,大部分学生基本能够正确判断物体的方向和距离,能够在方位图上按照有关要求正确画出物体的位置并正确绘制方位图,判断比较准确,绘图规范,但是个别学生总是找不准方向,因而不能判断方向,也不能够正确绘制方位图。

六年级数学下册教案 篇10

  已知一个数的几分之几是多少求这个数的应用题

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

(2)指名口头列式计算。

  二、新知探究

(一)教学例1.

  1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

  2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的'单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解: 35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

六年级数学下册教案 篇11

  教学目的

  1.通过知识迁移使学生掌握求一个数是另一个数的百分之几应用题的结构特征及解题规律。

  2.正确列式,掌握计算方法,准确计算。

  教学重点

  明确单位“1”,会列关系式。

  教学难点

  能够根据题中条件找出和关系式中相对应的数量。

  教学过程

(一)复习准备

  1.什么叫百分数?

  2.把下列各数化成百分数。(保留一位小数)

=    =    =     ≈       ≈

  3.列式计算,说分析思路。

  六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?

  说思路:关键句是“占六年级学生人数的几分之几”,也就是120人占六年级学生人数的几分之几。和六年级人数相比,六年级人数做单位“1”,关系式为

  已达标人数÷六年级人数

  小结:这是求一个数是另一个数的几分之几的应用题。因为所求的问题是表示两个数量之间的倍数关系,所以用除法计算。关键是找单位“1”,用单位“1”做除数。

(二)讲授新课

  改变准备题为例题,把“几”改成“百”。

  例1 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

  1.读题,说出例题与准备题有什么不同?百分数表示什么?(表示两个量之间的倍数关系。)这道题与准备题的解题思路一样吗?

  2.说解题思路。(小组互说,集体订正。)

  这道题的关键句是“占六年级学生人数的百分之几”,把问题补充完整,也就是已达到《国家体育锻炼标准》的120人占六年级学生人数的百分之几。和六年级人数比,六年级人数是单位“1”,做标准量。达到国家体育锻炼标准的120人是和六年级学生人数相比的量。

  3.列关系式:

  已达到国家体育锻炼标准的人数÷六年级总人数

  4.列式:

(板书) 120÷160==75%

  答:占六年级学生人数的75%。

  请同学们看计算格式:通常先求出商,用小数表示,然后,再转化成百分数。

  问:结果表示什么?为什么没单位名称?

(体育达标的人数与六年级学生人数是倍数关系,所以没有单位名称。)

  5.求一个数是另一个数的几分之几与求一个数是另一个数的百分之几的应用题有什么相同点和不同点?

(相同点:应用题的结构特征、数量关系、解题方法都用除法计算;不同点是最后结果,一个用分数表示两数间的倍数,另一个是用百分数表示两数间的倍数关系。)

  6.解这类题的关键是什么?

(明确单位“1”的量;找准与单位“1”相比的量,用与单位“1”相比的量除以单位“1”。)

  7.过渡到例2。

  百分数还可以叫做什么?(百分率,百分比。)

  你在日常生活中,听到过哪些率?(发芽率,出勤率,合格率……)

  求这些率有什么作用?表示什么意思呢?

  师:实行科学种田,为了保证基本苗数量,又避免浪费种子,就要先进行发芽率的试验。求发芽率就是求发芽的种子数占试验种子总数的百分之几。通常用下面的公式计算:

  问:“率”表示什么?(两个数相除的商。)

  师:发芽率是百分率的一种,公式本身应该用百分数的形式(%)表示,所以,要“×100%”。

  例2 某县种子推广站,用300粒玉米种子做发芽试验,结果发芽的种子有288粒。求发芽率。

  1.默读题,说已未知条件。

  2.什么叫发芽率?(同桌互说)

  3.根据发芽率公式,自己列式。集体订正。

  问:结果有单位名称吗?为什么?

  4.根据发芽率的公式,你们能说出求下列百分率的公式吗?(边说边投影。)

  想一想:你能告诉大家一个百分率公式吗?

  5.练习:第137页“做一做”。强调先写公式,再列式计算。(集体订正。)

(三)巩固练习

(投影)

  1.一班种树40棵,二班种树48棵,二班种的棵数占一班的百分之几?(集体订正)

  48÷40=120%

  为什么不是40÷48?(一班是单位“1”,一班种的棵数做除数,二班种的棵数是和一班相比的量,做被除数。)

  2.读题,说单位“1”;列式,说结果。

①2是5的百分之几?

(5是单位“1”,2÷5==40%。)

②5是2的百分之几?

(2是单位“1”,5÷2==250%。)

③4千米相当于5千米的百分之几?

(5千米是单位“1”,4÷5==80%。)

④20分钟是1小时的百分之几?能直接列式吗?先怎么办?

  3.以小组为单位说分析思路后,个人在本上列式,集体订正。

①某村前年造林15公顷,去年造林18公顷,是前年造林的百分之几?

②某种录音机原价560元,现价是320元。现价是原价的百分之几?原价是现价的百分之几?

③某生产队割青草200吨,晒成干草后还有120吨。求青草的含水率?

  关键要明确,青草含水重量,就是失去的水分,即:青草晒成干草后少的重量。

④某年级一班有男生22人,女生20人。女生占男生的百分之几?男生占女生的百分之几?男生占全班人数的百分之几?

  分析第三问,全班人数是单位“1”,全班人数是男生和女生的总和,所以,除数就是男女生人数的和,列式为:22÷(22+20)。

  问:第三问与前两问有什么区别?

⑤某区绿化环境,前年种花草200公顷,去年比前年多40公顷。前年种花种草是去年的百分之几?

  小组讨论分析,谁是单位“1”,谁是和单位“1”相比的量?会列式吗?集体订正。

  4.根据:“24,60”两个数编“求一个数是另一个数的百分之几”的题。

(四)课堂总结

  这节课我们学习了什么知识?解题步骤是什么?解题关键是什么?

(求一个数是另一个数百分之几,求百分率。解题步骤是先找重点句,确定单位“1”。关键找准单位“1”后,根据关系式找出相对应的数量。)

  课堂教学设计说明

  1.依据知识的迁移规律,进行了必要的铺垫。根据新课“求一个数是另一个数的百分之几”的需要,首先复习了百分数的意义,及分数、小数化成百分数的方法,重点突出了准备题,为顺利讲授新课、过渡到新课做了铺垫。

  2.引导学生找出新旧知识的异同点,进一步强化了教学的重点。总结出解题思路,掌握解题的关键及步骤。

  3.精心设计习题,使知识引向深入。由直接给出关系式中的.数量到间接给出关系式的数量,通过智力活动内化,逐步向能力转化。

  4.运用迁移规律,以旧引新,调动学生参与新知识学习的积极性,教给学生掌握知识的方法与技能,使学生学会学习。

  板书设计