您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

《体积与容积》教案6篇

2024-04-11 10:43:45综合

《体积与容积》教案6篇

  下面是范文网小编收集的《体积与容积》教案6篇,以供参阅。

《体积与容积》教案6篇

《体积与容积》教案1

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的'大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

《体积与容积》教案2

  教学目标:

  知识与技能:会用量具测量不规则物体的体积。

  过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。

  情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。

  教学重点:探索不规则物体体积的测量方法。

  教学难点:知道不规则物体的体积就是排开水的体积。

  教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。

  教学过程:

一、导入阶段

  师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。

  师:小胖想问问你们这些物体的体积你们会求吗?怎么求?

  1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。

  2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。

  b、把容器内的水倒在量杯内,就能测出水的体积。

  师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。

  (出示课题:用量具测体积)

  二、新授

  师:我们首先来观看大屏幕。(视频)

  师:请大家交流一下,你看到了什么?

  生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。

  师:大家再看一下……

  师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?

  师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。

  师:那想一下,如果现在我把这石块从容器内取出的话,容器内水面高度又会发生怎样的变化?

  生:容器内水面高度会下降。

  师:再将石块放入容器内呢?容器内的水面高度又会XXXX?

  师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)

  生:水面升高的那部分水的体积就是石块的体积

  师:接下来,大家再来看一段视频,你试试看能否用刚才我们所学的这个知识来计算出罐头的体积?

  实验告诉我们是如何测量罐头的体积?罐头的体积是多少?

  (原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)

  师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积

  师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?

  1、观察原来水的体积。

  2、放入石块。

  3、观察变化后的体积。

  4、求两个体积的差。

  师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)

  师:石块没有被完全浸没,但是水面却升高了,那么石块的体积是否就是水面升高的这部分水的体积?

  (不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)

  师:只有将石块整个都浸在水里面,水面升高那部分的水的`体积就是石块的体积。

  师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)

  师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。

  师:请同学们说一说乌鸦为什么会喝到水?

  (把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)

  师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。

  师:接下去请同学们把书翻到67页,独立完成书上的第二题。

  师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?

  (原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。

  上升部分水的体积就是苹果的体积:800-600=200ml=200cm3

  师:一起来看第三题,两只形状、大小相同的量杯盛有同样多的水,放入两块形状不同的石头后,如果水面升到一样高,那么这两块石头的体积相同吗?

  (相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)

  A

  一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)

  B

  一只长方体的玻璃缸,长6分米,宽4分米,水深5分米,如果将一块体积是14。4立方分米的石块全部放入水中,水面会上升多少分米?

  讨论题:

  有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)

  判断题

  1。把一个铁球沉没在长1。5分米,宽1。2分米的长方体容器里,水面由4。5分米上升到6分米,你能求出这个铁球的体积吗?

  (容器的厚度不计)

  A、

  1.5×1。2×4。5

  B、

  1.5×1.2×6

  C、

  1.5×1.2×(6—4.5)

  D、

  1.5×1.2×(4.5+6)

  2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)

  A、

  10×4÷(3×4)

  B、

  10×4×0.5÷4

  C、

  3×4×0.5÷(10×4)

  D、

  10×4×0.5÷(3×4)

  深化练习:

  从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)

  H独立练习:

  1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)

  2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)

  三、小结

  师:通过今天的学习,你有什么收获?

《体积与容积》教案3

  教师准备

  多媒体课件

  学生准备

  各种立体图形的实物图

  教学过程

  ⊙实验导入

  1、实验引出体积的概念。

  将不规则的石块放入盛有水的圆柱形水杯中,水面升高。

  师:谁能用数学知识解释这种现象?(揭示体积的意义)

  2、明确复习内容。

  师:我们学过哪些立体图形体积的计算方法?

  教师结合学生的回答点出画面(四种立体图形),揭示课题。

  3、出示学习目标。

  (1)经历交流、讨论、合作学习的活动过程,在活动中掌握立体图形体积的计算方法。

  (2)进一步提高运用所学知识解决实际问题的能力。

  [板书课题:立体图形体积(容积)的计算]

  ⊙回顾与整理

  1、体积的意义。

  课件或实物出示相关的立体图形。

  提问:什么是物体的体积?什么是物体的容积?

  (学生小组讨论后,小组代表发言,并借助自己手中的实物图进行说明)

  教师根据学生的回答进行小结:物体所占空间的大小,叫作物体的体积。箱子等所能容纳物体的体积,通常叫作它们的'容积。

  2、体积(容积)的计算。

  (1)再现思路。

  师:这些立体图形的体积公式你们还记得吗?请和同桌交流自己知道的立体图形的体积公式。

  小组交流后指名汇报。

  预设

  生1:长方体的体积=长×宽×高。

  生2:正方体是特殊的长方体,正方体的体积=棱长×棱长×棱长。

  生3:圆柱的体积=底面积×高。

  生4:圆锥的体积=×底面积×高。

  师:你们知道怎样计算这些物体的容积吗?

  (学生交流)

  师强调:物体容积的计算通常要从物体里面测量所需的数据,并用体积公式进行计算。

  (2)引导学生分别说出各种立体图形体积公式的推导过程。

  (先让学生小组讨论,各自说出自己的想法,然后教师指名汇报)

  (3)师:结合刚才交流的内容说一说立体图形的体积公式之间有什么联系。

  生:长方体、正方体和圆柱的体积公式都可以写成底面积×高的形式。

  (4)字母公式。

  师:你们能用字母表示这些立体图形的体积公式吗?

  (学生在练习本上自主写出字母公式)

  (教师板书:长方体:V=abh

  正方体:V=a3

  圆柱:V=Sh

  圆锥:V=Sh)

  (5)列表梳理。

  立体图形

  体积公式

  联系

  长方体

  V=abh

  ①长方体、正方体、圆柱的体积公式都可以写成V=Sh。

  ②圆锥的体积等于和它等底等高的圆柱体积的。

  正方体

  V=a3

  圆柱

  V=Sh

  圆锥

  V=Sh

  3、常用的体积(容积)单位及其进率。

  (1)常用的体积(容积)单位有哪些?

《体积与容积》教案4

  教学目标

  1、经历体积与容积的概念的建立过程,理解体积和容积的意义。感知常用体积和容积单位的大小,能正确地选择合适的单位进行相应数量的计量。

  2、在亲历感知,在感悟中形成对学科学习的内在兴趣。

  教学重点

  教学难点通过参与试验、分析与尝试,掌握体积和容积概念,会确定体积和容积相应并能正确地把握体积的大小。

  教学方法动手操作、分析、合作

  教学准备每个小组准备一个盛水的量杯一个土豆

  教学过程:

  一、导入新课

  师:我们已经学习了长方体和正方体表面积的知识,这节课,我们继续探究“长方体和正方体的体积和容积”。

  二、感受物体的体积

  1、分组实验

  方法:将土豆放入一个盛水的量杯中,注意记录放入前后的水位高度。

  猜想:量杯中的水位会发生什么变化?

  观察:通过对上面实验的观察,有什么发现?看到——土豆放入时,水位上升了;取出时,水位又基本复原。

  思考:这个现象说明了什么?

  生:土豆占有空间,入水时,水会被挤开,造成水位上升;而取出时,土豆所占的位置空出,水于是又复原。

  2、体积的意义:

  师引导学生读书57页中间文字并结合实验同桌交流自己所理解的体积的概念。

  3、想一想:你还能用其它方法感受物体的体积吗?

  三、感受物体的容积

  1、①1箱牛奶的`体积与6盒牛奶的体积比?(1箱牛奶体积大于6盒牛奶的体积。)②1盒牛奶的体积与1杯牛奶的体积比?(1盒牛奶的体积大于1杯牛奶的体积。)

  从上面的结论中你想到了什么?(整个容器体积大于内中装的体积)

  2、归纳容积的意义(板书)

  3、同桌互相举例说明物体的体积与容器,及其大小比较。

  四、体积单位

  1、长度、面积和体积基本单位的确定:

  棱长为1厘米的正方体的体积为1立方厘米

  棱长为1分米的正方体的体积为1立方分米

  棱长为1米的正方体的体积为1立方米

  感觉一下1立方米的大小

  (1)如果同学们在正方体模型中蹲着,会蹲下几个?

  (2)如果把书包放在这个正方体模型中垒起来,大约可以垒多少个?

  2、容积单位的确定:

  师指出:我把能容纳1立方厘米和1立方分米物体的容积的大小分别叫做1毫升和1升。

  在生活中计量液体的体积常以毫升和升为单位。(让学生认真阅读理解59—60页中的文字,然后同桌相互说一说)

  3、课堂活动:60页1、2题。通过课堂互动,让学生在搜索和交流中熟悉和增强体积和容积单位大小的实感。

  五、全课总结

  这节课你学会了什么?有什么新的感受?

  六、布置作业

  课本62-63页练习十二第1、2、5题。

  第二课时

《体积与容积》教案5

  教学内容:北师大版第十册P41—P42。

  教学重点:理解体积与容积的概念。

  教学难点:体积与容积两个概念的区别与联系。

  教具、学具准备:量杯、水槽、苹果、红薯、土豆、正方体方块、橡皮泥、多媒体课件。

  教学过程:

  一、创设情境。

  播放《乌鸦喝水》的片断。

  问:水面为什么会上升?空间

  学生回答后教师追问:如果把这个(苹果)放入这一满杯水中会怎样?为什么?苹果放到装满水的杯子里,水为什么会溢出来?”“溢出来的水与放入杯里的苹果有什么关系?”

  二、教授新课。

  1、创设问题情境,揭示体积意义。

  那谁能说一说这个土豆和红薯谁占的空间大吗?你能一眼看出谁大谁小吗?有什么办法比较出他们到底是谁大?(实验)。

  主要让学生说出物体放入量杯后,水面所发生的变化,并说出为什么?

  请大家观再察比较一下2个杯子水面,你发现了什么?是什么原因呢?上升的水与瓶子里的土豆或红薯有关系吗?”

  从刚才的实验中我们知道土豆和红薯都占有一定的空间,而且各自占的空间是不一样的。事实上所有的物体都占有一定的空间。如课桌占有一定的空间,课本占有一定的空间,而且物体所占的空间有大有小。

  数学上像苹果所占空间的大小就叫苹果的体积,土豆所占空间的大小就叫土豆的体积……

  问:你认为什么叫做物体的体积呢?

  物体所占空间的大小,叫做物体的体积。

  刚才的'实验中我们就可以说红薯的体积比土豆的体积大。

  引发说理:我们每个同学有没有体积?你认为谁的体积最大?为什么?

  2.同学们已经知道了什么是体积,下面的3个物体,你能根据他们的体积,按由大到小的顺序重新排列吗?

  可乐瓶,茶叶盒,墨水瓶。

  可乐瓶可以用来作什么?茶叶盒呢?

  象这样可以用来盛放东西的物体我们称之为容器。板书

  如果可乐瓶装满了水,水的体积就是瓶子的容积。这个茶叶盒所能容纳茶叶的多少就是它的容积,谁来说说什么是墨水瓶的容积?

  你能从生活中也这样说说吗?也就是说只有什么才有容积呢?

  谁能总结一下,什么是容器的容积?

  容器所能容纳物体的体积,叫作容器的容积。

  请同学们看这里,烧杯装半杯水,我说现在水的体积就是这个烧杯的容积,你同意吗?为什么?

  那这三个容器它们谁的容积最大?谁的容积最小呢?

  你还能找出生活中的2个容器来比较一下它们容积的大小吗?

  3.比较教材的2个容器(或者2个矿泉水瓶子)

  它们谁的容积大,谁的小?

  你能设计一个实验来解决这个问题吗?

  4.老师还有一个题目想挑战一下吗?

  保温杯子(体积较大但容量较小)和矿泉水瓶子的例子

  “杯子的体积和容积一样吗?”讨论杯子的体积和容积分别指什么?

  学生讨论容积和体积的区别与联系。

  通过刚才的学习,你知道容积和体积有什么不同吗?

  生:容积的测量应该用容器的里面进行,体积的测量应该从容器的外面进行。

  三、基础练习。

  1、42页“试一试”

  谁搭的长方体体积大?你有什么办法知道?

  怎样计算小正方体的个数?

  2、“练一练”第1题

  学生独立思考后讨论,全班交流。

  小结:同一物体形状发生了变化,但体积保持不变。要求:用一团橡皮泥,第一次把它捏成长方体,第二次把它捏成球,捏成的物体哪一个体积大?为什么?如果捏成任意任意形状的物体,体积有没有变化?

  3、“练一练”第2题

  学生充分观察讨论。

  (同样10枚硬币,第一堆与第二堆比,因为一枚1元硬币比一枚1角硬币大,所以第一堆体积大;而第一堆与第三堆比,都是同样的硬币,只是堆放的方式不同,所以体积不变。)

  4、“练一练”第3题

  学生独立思考后交流

  (如果每个杯子的大小不同,那么3杯就可能等于2杯)

  四.小结:

  通过本节课的学习,你有哪些收获?

《体积与容积》教案6

  教学目标:

  1、知道体积、容积的意义,以及它们之间的联系与区别。

  2、知道常用的体积单位及其所占空间的大小。

  3、会进行体积单位和体积单位,体积单位和容积单位之间的改写。

  4、知道物体中所含有的体积单位就是它的体积。

  教学重点:理解体积的含义,认识常用的体积单位。

  教学难点:理解体积与容积之间的联系与区别。

  教学过程

  一、故事引入

  师:今天,老师给同学们带来了一个小故事,故事里蕴藏着我们这节课要研究的数学知识,请仔细听。

  课件出示:智慧爷爷让淘气和笑笑比赛做口算题,获得第一名可以拿大的水果,奖品是苹果或鸭梨(两个水果的大小差不多),结果淘气获胜,可不知拿苹果还是鸭梨?

  师:淘气为难了,拿苹果还是拿鸭梨呢?这节课我们帮淘气想个办法,让他分辨出大小。

  二、实验探究

  (一)认识体积

  1、说一说。

  师:(出示一个苹果)苹果有的个头大,有的个头小,说明所占的空间有大有小,像这个苹果所占的空间,就叫苹果的体积。 (板书:体积)篮球所占空间的大小,叫做篮球的体积。你能说说什么是数学书的体积吗?

  生:……

  师:谁能联系身边的物体,也像这样说说看。

  生:纸箱所占空间大小叫纸箱的体积。

  师:你能概括一下,究竟什么是物体的`体积吗?

  生:物体所占空间的大小,叫体积。

  (教师小结并板书:物体所占空间的大小,叫做物体的体积。)

  2、比一比。

  师:老师请你们准备的物品,都带来了吗?那就把你的物品和同桌的物品比比,谁的体积大?谁的体积小?

  生1:我的苹果体积大,他的橘子体积小。

  生2:我的铅笔盒体积小,他的铅笔盒体积大。

  师:刚才我们用眼睛看,比较出了物体体积的大小,老师这有两样东西,(出示红薯和土豆)它们的体积谁大谁小?

  (有的学生说红薯体积大,有的学生说土豆体积大,还有的没有发表意见。)

  师:看来,用眼睛看,我们无法准确地分辨出谁的体积大,谁的体积小,你能想一个办法来解决这个问题吗?

  (学生独立思考,然后同桌交流。)

  师:谁愿意先说?

  生1:掂一掂哪个重,那个的体积就大。

  生2:放进盛有一样多水的杯子里,谁水面上升的高谁的体积就大。

  生3:把土豆和红薯放到同样大的杯子里,再各倒入200毫升的水,谁的水面高谁的体积就大。

  师:把无法用观察的方法比出体积大小的物体放入水中做实验,可以知道它们的体积大小。下面,咱们就分四人小组,利用桌面上的工具,进行实验。

  生1:我们实验的步骤是把土豆、红薯放到同样大的两个烧杯里,然后每个杯子里都倒入200毫升的水,结果放红薯的烧杯水面上升到370毫升,放土豆的上升到360毫升,我们组认为红薯的体积大。

  生2:我们组先把两个烧杯各放入150毫升的水,再把土豆红薯分别放到烧杯里,观察水面升高情况,得出也是红薯体积大。

  生3:我们组用一个烧杯做的实验,首先在烧杯里放200毫升的水,把土豆放进去,看到水面停在360毫升刻度上,拿出土豆再放红薯,水面停在370毫升。说明红薯体积只比土豆大一点点。

  师:电脑博士也做了这个实验,看看它和你们想的一样吗?实验的结果怎样?你有什么发现?(课件展示实验过程。)

  生:……

  (二)认识容积

  1、认识容器。

  师:同学们已经掌握了比较物体体积大小的方法。下面这三个物体,你能根据它们的体积,按照由大到小的顺序重新排列吗?

  (教师出示500毫升可乐瓶,200毫升茶叶盒,50毫升墨水瓶,学生上台操作。)

  师:排的对吗?可乐瓶能用来做什么?

  生:盛可乐、盛水、盛色拉油……

  师:茶叶盒呢?

  生:装茶叶。

  师:像这类可以用来盛放东西的物体,我们称之为容器。 (板书:容器)

  2、感知容积。

  师:如果可乐瓶装满了水,水的体积就是它的容积。这个茶叶盒,它所能容纳茶叶的体积,就是它的容积。谁来说说什么是墨水瓶的容积?

  生:……

  师:你能从生活中举例,也像这样说一说吗?

  生1:塑料桶装满水,水的体积就是桶的容积。

  生2:茶杯里盛满水,水的体积就是这个茶杯的容积。

  师:谁能总结一下,什么是容器的容积?

  生1:杯子里水的体积就是杯子的容积。

  生2:容器里所盛物体的体积就是他的容积。

  (教师小结并板书:容器所能容纳物体的体积,叫做容器的容积。)

  师:请同学们看这儿,(出示一个烧杯,里面装有一半水)我说现在水的体积就是这个烧杯的容积,你同意吗?为什么?

  生:不同意,因为水没装满。

  师:这三样物品(500毫升、可乐瓶,200毫升的茶叶盒,50毫升纯蓝墨水瓶)它们谁的容积大?谁的容积小?

  生:可乐瓶容积大,墨水瓶容积小。

  师:你还能找出生活中的两个容器,并说出哪个容器容积大,哪个容器容积小吗?

  生:教室里的纯净水桶容积大,我喝水的瓶子容积小。

  3、比较容积相近的容器的大小。

  (出示标有1号、2、号标签的两个瓶子:一个是果粒橙瓶子,一个是康师傅绿茶瓶子,商标都已撕去。)。

  师:它们谁的容积大?谁的容积小?你能设计一个实验来解决这个问题吗?下面咱们分小组解决这个问题。

  生1:如果有商标就好了,上面有容积,一看就知道,可是现在没有商标,我们组把l号瓶里装满水,再把水慢慢倒进2号瓶,倒满后1号瓶还有剩余,说明1号瓶容积大。

  生2:瓶口太小倒水不方便,我认为把两个瓶子都装满水,倒进同样大的两个烧杯里,看水面的高度就可知道他们的容积大小。

  师:你认为哪一组设计的方法最简便,最容易操作?那就请你们上台来演示。

  (学生实验。)

  三、综合应用

  师:刚才,我们一起研究了物体的体积和容积,还掌握了比较它们大小的方法。下面我们来轻松一下,做个闯关游戏。

  第一关:课件出示教材第42页插图。

  师:请看清图意,他们都是用同样大小的立方体搭成的,你能判断出谁搭的长方体体积大吗?

  生:……

  师:他们的说法你同意吗?

  说说你的想法。

  生:……

  第二关:,课件出示教材第42页练一练第1题。

  师:一团橡皮泥,小明第一次把它捏成长方体,第二次把它捏成球,捏成的两个物体哪一个体积大?为什么?

  师:你能想出结果吗?如有困难可用实验方法亲自捏捏看。有结果了吗?

  生:我认为一样大,因为一块橡皮泥不管捏成什么样,还是它自己。

  第三关:课件出示教材第42页练一练第2题。

  师:谁愿意先说?

  生:……

  第四关:(课件出示)小明和小红各有一瓶同样多的饮料,小明倒了3杯,而小红倒了2杯。你认为有可能吗?为什么?

  生:有可能,小明的杯子小可以多倒几杯,小红杯子大就要少倒几杯。

  师:说得很有道理。