您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

小学数学《比的意义》教案(合集11篇)

2023-07-10 11:32:06综合

小学数学《比的意义》教案(合集11篇)

  【简介】这是一份关于小学数学《比的意义》的教案,旨在帮助学生理解比的概念和意义。下面是网友“huangkui”整理的小学数学《比的意义》教案(共11篇),供大家阅读。

小学数学《比的意义》教案

《比的意义》教学设计 篇1

  教学目标

  1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。

  3、能用分数表示部分与整体的关系

  4、学生能知道某一个量是整体的几分之几。

  情感态度与价值观:体会数学在日常生活中的应用。

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学准备:课件

  教学过程

  一、板书课题:同学们今天我们一起来学习分数的意义。

  二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:

  三、自学指导:请同学们打开书第45-46页,认真看课本内容边看书,并思考以下问题

  1、什么情况下用分数表示。

  2、分数四分之一表示什么

  3、什么叫单位“1”

  4、什么是分数单位?

  五分钟后比一比,谁自学最认真,谁能做对检测题。

  四、先学

  一)看书(看一看)

  学生看书自学,教师巡视,确保每一名学生都在紧张的自学。

  (二)检测(做一做):

  1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)

  2、教师巡视发现错例,准备二次备课。

  五、后教

  (一)更正:

  观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)

  1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)

  六、课堂小结

  今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的`一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)

  七、当堂训练

  1、课本63面练习十一第1、2、3题。(必做题)

  2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)

  八、板书设计

  分数的意义

  一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。

  一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  《分数的意义》教学反思

  本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。

  在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。

  但是回顾整课的教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。

《比的意义》教学设计 篇2

  教学内容

  苏教版五年级上册第28-29页。

  教材分析

  在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。

  学生分析:

  这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的`能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。

  设计意图:

  本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。

  (1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。

  (2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示的大小,在此基础上认识、、……从而理解1里面有10个.继续拓展,认识两位小数、三位小数……

  (3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。

  实施过程

  一、前置学习,初步感悟。

  1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。

  2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)

  3.全班汇报:

  第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。

  第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。

  二、课中操作,沟通联系。

  1.理解一位小数的意义

  (1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说的意义是什么吗?

  (2).那么老师这里有一张正方形纸,如果把这张正方形的纸看作1,怎么在这张纸上表示的大小。

  拿出正方形纸,分一分,涂一涂表示的大小。

  展示交流,看看这些同学的作品,发表你的意见。

  那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?

  虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。

  (3).课件演示,这样表示吗?要表示还需要涂出一份。再说一说表示什么意义。

  (4).仔细看,你除了看到还看到那个小数?你是怎么看到的?写成分数是什么?和合起来是多少?1里面有几个。

  (5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?

  (6).把1平均分成十份,我们认识了、、、外还可以表示那些小数。

  这些小数都是一位小数,一位小数表示什么意义呢?

  把1平均分成10份,表示其中的几份,也就是表示十分之几。

  2.理解两位小数的意义

  (1).那的意义是什么呢?

  (2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示,你准备怎么表示。

  把这张正方形纸平均分成100份,涂其中的1份表示。

  (3).课件演示,可以表示哪个分数。仔细观察你除了看到,你还能看到那个小数。

  9写成分数是多少?9里有几个。和9合在一起是多少。1里有多少个

  (4).课件出示,你看到哪2个小数,分数是什么?

  8和合在一起是多少。

  这些小数都是两位小数,两位小数表示什么意义。

  把1平均分成100份,取其中的几份,也就是表示百分之几。

  3.理解三位小数的意义

  (1).照这样看三位小数表示?千分之几。

  (2).三位小数最小的是谁?表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?99表示什么意义。和99合在一起是多少。1里面有多少个。

  2写成分数是多少?写成小数是多少?

  4.拓展四位小数、五位小数

  (1).那四位小数表示什么呢?23表示哪个分数。

  (2).五位小数表示什么意义?写成小数是什么?

  5.概括小数的意义

  那什么是小数的意义呢?

  引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  三、分层练习,实质理解。

  1.对口令

  看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。

  规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。

  结合有单位的题目,0元、厘米、米说一说表示的意义。

  2.写小数

  刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?

  这个图形又可以用哪个小数表示?如果要表示怎么办?

  3.数轴上得小数

  看、这是一条数轴,这两个点可以用哪个小数表示。

  把数轴延伸,这两个点可以用哪个小数表示。在哪里?从0向左看你还能找到哪些数。

  4.通过本节课的学习你有什么收获?

  虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识

《比的意义》教学设计 篇3

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

  一、引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (!)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法。

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5

数学《比的认识》教学设计 篇4

  教学内容

  一(上)第14页 “想想做做”第5~9题。

  课型

  练习

  施教日期

  月 日 星期

  教学目标

  1.让学生在初步理解1~5各数的具体含义的基础上,正确读写这些数,体会并认识5

  以内数的顺序,会解决关于数的认识的简单实际问题。

  2.进一步体会数与日常生活的密切联系,体验分类的思想,初步体验把总个数分成两

  部分的事实。养成从数学角度观察事物的习惯。

  3.感受数与数的关联,产生对数学的兴趣,培养良好的书写习惯。

  教学重点

  难 点

  重点:1~5的意义、正确规范的书写1~5各数。

  难点:逐步培养良好的学习习惯。

  教学资源

  学情分析:初步理解了1~5每个数的实际含义,会认、读、写1~5各数,会用1~5各数表示物体的个数。

  教材分析:第5题体会数的顺序,第6题指导学生先想后画,第7题启发学生按不同的标准分,第8题让学生站一站,再说一说前后各有几个同学。

  教学准备:PPT图片、圆片、计数器、磁性教具等。

  学 程 设 计

  导 航 策 略

  修改调整

  一、揭示目标,知识梳理。(预设2分钟)

  1.学生按顺序数数。

  2.明确学习目标。

  二、巩固内化,查漏补缺。(预设28分钟)

  1.基本练习:

  ① 摆圆片数数

  边摆圆片边数数,集体从1数到5。

  ② 黑板上贴出1~5五个数(不按顺序),请你从中选出其中两个数写在练习本上,写的几就在后面画几个○。

  请几个小朋友在黑板上的数下面摆出相应的圆片。

  ③“想想做做”第5题。

  排一排、读一读,进一步明确1-5的顺序。

  交流要求:你是怎么排的?有不同的排法吗?

  2.发展练习:

  ①“想想做做”第6题。

  导学单:

  1.读一读花瓶上的数,看看每个瓶里花的朵数对不对?

  2.根据花瓶上的数补画出缺少的花。

  分别补上缺少的花:l朵、2朵、2朵。

  ②.“想想做做”第7题。

  导学单:

  1.你能把星分成两类吗?

  2.你是按什么分的?

  (既可以按颜色分,也可以按形状分)

  ③.“想想做做”第8题。

  说说每个孩子前面有几个同学,后面有几个同学。

  同学们一起按顺序,一个一个地把他们说的话说一说,好吗?

  ④.“想想做做”第9题。

  先读一读格子里的数,再描数与写数。

  比一比,谁写得最认真、最漂亮。

  三、当堂检测,拓展延伸。(预设10分钟)

  1.今天你哪些方面有进步?

  2.课堂作业:

  《补充习题》第6页1、2、3、4题。

  3.拓展题:数一数你家里在5以内的东西,说给你父母听一听。想一想,你还可以用这些数字记录什么?

  →上一节课我们认识了哪些数?你能从1开始数到5吗?

  →今天这节课我们一起练习1~5各数的认识。(出示课题)通过练习,进一步认识这些数,能认真地写好这些数。

  组织学生交流评价。

  →导学要点:

  ① 查看一下你的同桌是否正确?

  ② 这里几表示的个数最多,几表示的个数最少?

  →请同学们看黑板上的1~5。你能有序地把这5个数的卡片排一排吗?拿出你的5张卡片排一排,并和同桌交流你是怎么排的。

  →按顺序排既可以从1~5,也可以从5~1。并练习看卡片读数与不看卡片读数。

  →引导:你能补画出花瓶里缺少的花吗?现在你就看花瓶上的数,是几就画满几朵。

  学生独立完成,交流:你添了几朵,为什么?

  画的时候要提醒学生不必在意画的是否好看,而要看每一个花瓶里花的朵数与花瓶上的数是不是一样。

  →指出:可以按颜色分,红色有4个。可以用四个小圆点表示,黄色有1个,用1个小圆点表示;也可以按形状分,分成五角星一类,有3个,四角星2个。

  →引导:图中女孩是怎么说的?她后面的男孩可以怎么说?再往后的小朋友每人可以怎么说?

  追问:如果队伍里从前往后按顺序说,每人说的前面和后面的人数是怎样变化的?

  →结合上一节课具体情况进行针对性的指导。a.执笔方法;b.写字的姿势;c. 书写注意点(起笔、拐弯、收笔演示清楚)。

  如:1像小棒,从靠近右上角起,稍微向左下角倾斜。2像小鸭,3像耳朵,数3的书写较难,要重点指导。4像小旗,5像秤钩,都是两笔写成,老师要说出每一笔的起笔、收笔过程,先写什么,后写什么。教师巡视指导。

  →教师巡视,辅导学困生。

  当堂批改、讲评、订正。

  【教后反思】

《比的意义》教学设计 篇5

设计说明

  本节课的内容是在学生学过分数与除法的关系,分数乘、除法的意义,分数乘、除法应用题的基础上进行教学的,结合教材特点,教学按以下4个层次进行:

  1.由倍数关系引出同类量的比。

  结合两面长方形小旗的数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。

  2.由倍数关系引出非同类量的比。

  结合飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出路程与时间这两个非同类量的比。

  3.概括比的意义。

  以引出的几个比为例,说出比的意义,读、写法及比的各部分名称,并由计算比值的实例,引出“比值通常用分数表示”。

  4.明确比与除法、分数的关系。

  根据分数与除法的关系,引导学生归纳出比、除法、分数三者之间的关系。

课前准备

  教师准备:PPT课件、学情检测卡

教学过程

⊙复习铺垫

  1.某车间有男工5人,女工8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?

  2.分数与除法有什么关系?(分数的分子相当于被除数,分母相当于除数)

  设计意图:在结合生活实际复习两个同类量之间的倍数关系的基础上,进一步复习分数与除法的关系,为新知的学习做好铺垫。

⊙讲授新课

  1.教学比的意义。

(1)教学同类量的比。

①用除法表示同类量之间的关系。

  a.课件出示:杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。这两面旗都是长15cm,宽10cm。

  b.讨论:怎样用算式表示这两面旗的长和宽的关系?(引导学生说出:可以求长是宽的几倍,或求宽是长的几分之几)

②用比表示同类量之间的关系。

  a.引入比的概念:两面旗的长和宽的倍数关系还可以用“比”来表示。长÷宽=15÷10,宽÷长=10÷15,也可以说长和宽的比是15比10,宽和长的比是10比15。

  b.简介同类量的比:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,所以两面旗的长和宽的比属于同类量的比。

(2)教学非同类量的比。

①用除法表示非同类量之间的关系。

  a.课件出示:“神舟”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行km。

  b.讨论:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(÷90)

②用比表示非同类量之间的关系。

  对于这种关系,我们也可以说:飞船所行路程和时间的比是比90,因为这里的km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。

《比的意义》教案 篇6

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的`时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

(1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

(2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

(3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67 的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

  今天这节课我们学习了?你有哪些收获?

《比的意义》教学设计 篇7

教学内容:

  人教版课标教材六年级上

教学目标:

  1、 理解比的意义,知道比是表示两个数之间的一种关系。

  2、 会读比、写比、知道比的各个部分名称。

  3、 渗透“变与不变”的函数思想。

教学重点:

  理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:

  沟通比与倍数、分数(百分数)、除法之间的内在联系。

教学过程:

  一、初步理解比是一种关系

  1、引入比。

(1) 问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和红球按4比1,应该怎么放?

  方案1:黄球4个,红球1个。

  方案2:黄球8个,红球2个。

  讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

  学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。

  方案3:红球12个、白球3个;红球16个、白球4个;

  讨论:为什么这些方法都是4:1?

(2) 红球和黄球的比呢?

(3) 小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

  2、认识比的各个部分的名称。

  中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。

  二、进一步认识比的意义

  1、出示羊毛衫图。

(1) 讨论:从这个2:3中,你可以得到哪些信息?

  交流:兔毛是羊毛的2/3;羊毛是兔毛的倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

  2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

  交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2) 如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

  说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3) 讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

  3、举例。

  三、完善比的意义

  1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

  交流:飞机飞行的速度是1800÷3=600千米/小时。

  1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

  2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

  讨论:你看到比了吗?

  交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

  四、总结提升

  1、 总结

(1) 今天我们研究了什么?说说什么是比?

(2) 比和我们以前学习的很多知识有联系,你能说说吗?

  2、 应用。(机动)

(1) 出示:地球储水量中,淡水与海水的比是4:141。

  从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

  今年流行16:9的宽频数字电视。

  最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

《比的意义》教学设计 篇8

教材简析:

  这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。

教学内容:

  苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

教学对象分析:

  学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

教学目标:

  1、理解并掌握比的意义,会正确读写比。

  2、记住比各部分的名称,并会正确求比值。

  3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

  4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

  5、养成认真观察、积极思考的良好学习习惯。

教学重点:

  理解和运用比的意义及比与除法、分数的联系。

教学难点:

  理解比的意义。

教学媒体:

  电脑课件、实物投影

教学过程:

一、创设情景,激发兴趣

  1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

  你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

  32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

  27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

  2、联系奥运,分析题目.

  在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下

  新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

  看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?()

  那你知道他的速度到底有多快吗?

  如果我要你们列式来求该怎么求呢?(110÷)你是根据什么来列式的?(路程÷时间=速度)

  看完奥运,我们再来看看我们学校的事情

  3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

  4、学校用150元买来3个小足球,每个小足球多少元?

(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

  学生读题回答,教师板书(总价÷数量=单价150÷3)

  3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

二、自主探究,合作交流

  1、比的意义。

(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

  那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

  质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

  引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

  都说完了,那谁愿意站起来说一说呢?

(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

  那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

  那单价呢?可以怎么说啊?(单价是总价和数量的比)

  在我们常用的数量关系中还有工作效率=工作总量÷工作时间

  这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的`意义,充分发挥了教师的引导作用。]

(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

  汇报,板书:两个数相除又叫做两个数的比。(齐读)

  你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

(4)练习题:填空。

  有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

  2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

(2)汇报。

  1:我学会了比的写法,3比4记作3∶4。(让学生板演)

  问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比又记作什么?(指名板演,其他同学写在练习本上)3∶44∶3110∶又怎样读呢?

  思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

  2:我学会了比的各部分名称。(结合3∶4来说明)

  如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

  3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

  问:那么怎样求比值呢?(前项除以后项的商)

  练习题:(课件出示)求出下面各比的比值。3∶∶∶∶1/5

  想:比值通常可以是什么数?

[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

  4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

  系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

  出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

  相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

  设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

  5:我还知道比的后项不能为“0”。

  问:为什么呢?(引导学生从不同角度说明)

三、多层练习,巩固新知

小学数学《比的意义》教案 篇9

教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

教学重点

  理解比的意义,比和分数、除法之间的联系。

教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的。画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

(2)什么叫比值?怎样求比的比值?

(3)比和除法、分数有什么联系?

(4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

《比的意义》教案 篇10

教学目的

  1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数

  2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。

  3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。

教学重点:

  理解整数、约数和倍数的概念。

教学难点:

  整数、约数和倍数的联系。

教学过程:

  一、复习

  1、师:谁能说说整数的含义?

  出示:23÷7=3...26÷5=÷3=524÷2=12

  教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?

  让学生观察算式,说说式中被除数、除数和商各有什么特点?

  教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

  教师:a的约数还可以叫做什么?

  让学生用两种说法说说:15÷3=5和24÷2=12

  教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

  师:以上三个条件,缺一不可。

  2、区别“除尽”与“整除”

  师:像6÷5=这样的除法,一般说6能被5除尽。

  被除数和除数

  商

  整除

  都是整数,除数不等于0

  商是整数,而且没有余数

  除尽

  不一定是整数,除数不等于0

  商是有限小数,没有余数

  二、新课

  1、教学约数和倍数的意义。

  在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)

  让学生看50页关于约数和倍数。

  教师:两个数在什么情况下才能说有约数和倍数关系?(整除)

  能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的。”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

  2、教学例1

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

  教师:15能被3整除吗?

  15是3的什么数?

  3是15的什么数?

  教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别

  1、基本练习P51做一做

  三、巩固练习

  1、独立完成练习十一的1、2、3题。

  2、第四题

  教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

  要判断哪些数是6的倍数,就要看哪些数能被6整除。

小学数学《比意义》教学反思 篇11

  本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:

  1.用天平创设情境直观形象,有助学生理解式子的意思

  等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

  2、对方程的认识从表面趋向本质

(1)在分类比较中认识方程的主要特征。

  在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。

(2)要体会方程是一种数学模型。

“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。

  3在“看”“说”和“写”中体会式子

  当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。