图形的对称教学反思12篇
下面是范文网小编收集的图形的对称教学反思12篇,以供参考。
一、一段题外话
4月4日清明,许多学校都组织了学生去春游。后来老同学讲了一个笑话。她说清明节那天她们学校组织去烈士陵园扫墓。回来后让学生写作文。要求写出所看到的,所想到的就行了。有一大半的学生写道:“清明节,我们怀着高兴的心情来到了烈士陵园。”
无语,不知道怎么说。
二、轴对称图形。
轴对称图形学生在三年级的时候就已经学过,感觉不是太难。书本上的题目我事先做了一下,觉得学生应该也是能够做的。
1、操作之后的语言
今天一上课我就出示了各种图形,让学生说出哪些是轴对称图形,学生很快地就把轴对称图形找出来了。我让学生拿了长方形到黑板前对折而后自己再画了对称轴,顺便规范了一下对称轴的画法。再让学生先想一下,再用自己的语言说了一下什么叫对称轴,哎,我发现,经过操作学生就是能够说,而且说得是自己的理解,也还蛮到位。
2、探究部分的难度。
原题为:试一试找出正方形的对称轴。
正方形图案简单,学生对正方形的感知很多,找出正方形并画出对称轴并不是难事,可以说,没有探究的价值。
所以,我把题目变了一下,改为让学生探究想想做做4.
小组合作:找出各个图形的对称轴。
完成下表。
正三角形
正四边形
正五边形
正六边形
边数
对称轴的条数。
你们的发现。
学生一填,马上找出了规律。那就是:正几边形就有几条对称轴。
这一步,还是处理得很满意的。
3、练习的`问题。
既然是新授的第一课时,练习中就肯定会出现形形色色的问题,有些在预设之中,有些在预设之外。
譬如第2题。学生的对称轴找不全。
譬如第5题,学生的图形设计流于简单,缺乏美感。
一、有效预习、提高效率
预习 是“学程导航·活力课堂”最核心的环节,预习的质量直接影响课堂教学的质量。《轴对称图形》一课的内容相对来说比较简单,所以我设计的`预习作业是:
1.让学生通过动手折一折,初步感知轴对称图形的特征,了解对称轴。
2.让学生收集生活中的轴对称图形,试着自己做一个轴对称图形。
二、实践操作、激活思维
本课为了让学生充分体验到轴对称图形的这一特征,我安排了折一折,比一比,猜一猜,画一画,做一做等一系列活动,让学生多种感官参与教学活动。在新授教学时始终把学生放在主体地位,让学生通过观察平面图形的特征,大胆地加以猜测,并通过小组动手操作来验证它们为什么是对称的,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,让学生了解这些图形的基本特征,形成感性的认识。
三、小组合作、发挥特效
在本课中,有很多活动都是采用小组合作的形式,如交流预习成果,在平面图形中找轴对称图形,交流如何做一个轴对称图形。这样通过小组合作,在操作、交流中感知,真正体现了“兵教兵”、“兵练兵”、“兵强兵”,从而将每个人的收获变成学生集体的共同精神财富。
一、数学的实质是一种文化
《新课程规范》指出:“数学是人类的一种文化,它的内容、思想、方法、语言是现代文明的一局部。”本节课的教学我没有拘泥于课本,“唯教材至上”,而是变“教教材””为“用教材”,把教材作为一个传达数学知识的一个载体。在公开课教案中将“自然、社会、历史、数学”等领域中轴对称图形有机的结合在一起,放大了轴对称图形的文化特性,折射出“冰冷”的图形背后的魅力,将轴对称图形的神韵淋漓尽致的表示了出来。
课堂上我用课件展示自然界中的蝴蝶、蜻蜓等具有轴对称图形特征的动植物图片,调动了同学的已有的'表象,丰富了同学的感知。面对一幅幅精美的图片,同学流露出的不只是惊喜,还有几分疑惑:为什么大自然如此的垂青于轴对称图形的形状呢?当“天安门、重庆人民大礼堂、上海东方明珠、河北赵洲桥”等极具中国特色的具有对称美的事物出现在同学的眼前时,同学们被这种文化氛围陶醉了,激发了同学热爱劳动人民的朴素情感和民族自豪感。
二、把探究活动引向深入
我在教学中创设了剪纸游戏、展示同学的作品,然后让同学观察自身创作的作品,比较他们的不同。由于是同学自身的作品,因此同学观察的很仔细。“我发现他们形状不同。”“我发现他们大小不同。”“我发现它们左右两边是完全一样的。”这样的发现过程是真实的,也是一个逐渐发现的数学学习过程。这样同学们就能够较好的判断一个图形是不是轴对称图形。
寻找平面图形中的轴对称图形是本节课的一个重要的环节。一是放手让同学通过自主探索、小组合作的方式进行探究性的活动,最后让同学汇报、争论。二是上述案例中的方法。尽管开放性没有方法一好,但是由于有了师生的互动,。在实践中我发现尽管方法一有很强的开放性,有利于培养同学的合作能力和探究能力,但是经常表示为优等生的游戏,绝大局部后进、中等的同学课后对这一环节表示疑惑。因此我在教学中采用了方式二,尽管开放性没有方法一好,但是由于有了师生的互动,方向性较强,又培养了同学层层深入研究、发现问题的能力。在争论平行四边形是否是轴对称图形的环节里,同学思维的火花在迸发,师生的对话是那样的自然,平等。教师的欣赏犹如催化剂,使探究活动走向高潮,生成性的精彩不时在课堂出现。
纵观本节课的教学,同学在新课程文化的轻拂下学习还是比较轻松的。这股清新之风吹走了数学的枯燥、苦涩,吹走了同学心灵中对数学的恐惧,让同学生长在富有情趣和意义的数学文化氛围中,使数学课堂充溢着文化的气息。
著名的美国教育心理学家波斯纳提出了一个教师成长公式:教师成长=经验 反思。每次上完课后,反思自己的教学行为,总结教学中的得与失,这既是一种学习,也是在不断丰富自己的教学素养和提升自己的教学能力.
上周,我上了一节公开课《中心对称图形》,现在就这节课我谈两个“做法”、两个“问题”:
两个做法:
(一)处处留心皆学问
本节课的设计上,我充分体现了“中心对称图形”这个重点,围绕它我进行了全方位的筛选材料,这些材料都是我平时积累的结果,其中有生活中的、小学算术中的、物理内容的、扑克牌上的、游戏里的、打油诗里的等等材料,从表面上看似乎没有多少联系的东西,最后都能很自然地为所统领,很自然地归属于“中心对称图形”这个中心。数学是一门讲究理论、讲究层次和条理的学科,对于没有真正感悟到数学之美的初中生来说,是容易枯燥的;当老师把数学和学生的生活紧密联系起来时,孩子们才会容易产生共鸣,进而对数学发生兴趣。因此,平时我特别注意收集跟数学有关的生活素材,以便于在教学中能简明、有趣地说明一些难懂或易错的数学知识。
(二)总结学生的新颖解法并充分利用它
在课堂教学中,我特别重视总结学生提出的问题和新颖的解法,数学问题往往是多个角度来考虑,特别是在几何证明题中,一道题往往有多种证明方法,因此在几何教学中,我注意例题的精选,精选出的例题在课堂中给学生充分思考的时间,充分去挖掘学生思想中蕴含的这部分的知识,然后让学生之间交流;上课时,对于每个学生回答的问题要及时给予评价,尽可能的多鼓励,这样会激励更多的学生参与到课堂中来。
有时候,刚在三班上完课,又到四班上在讲同样问题,就可以给学生说这个问题是刚刚在三班某个同学回答出来的,这样会暗示四班学生三班学生能回答的问题我们四班同样能回答的,人都有不服输的心里,这样会激励更多的学生参与到课堂中,同时对三班的同学也会起激励作用,课下会有四班同学给三班学生说到这个事情的,因为好事情传播的速度是很快的。三班的这位同学听说在四班的课堂上老师用到了他回答问题的方法,他至少会高兴一天的,今天这样明天也这样,经常这样学生就会对这门课程保持比较高的热情,这样对学生有利对自己也有利啊。
当一个学生的解题方法,通过我的加工拓展变成一种解题思路,每一次使用时,我就专门提出“这次我们应用某某同学的方法来解它”,对这个同学来说是莫大的心理鼓舞。
有一段,我曾经把自己学生作业中一些新颖解法汇集在一起,办成了一个小报,转发全年级每一个学生手里,以此来鼓舞学生、激发学生学习数学的兴趣。同班学生的独特解法上了第一期,其他学生就渴望下一期有自己的杰作,就会在作业中很努力地钻研而不是应付。
两个问题:
(一)公开课上我“戴着镣铐跳舞”
本节课上,在探讨图形分割时,一个学生就提出了一个新的想法:把虚拟的一个小长方形割下补到另一个实图的对称位置,当时,为了不耽误时间,我仅仅简单交代一下就过去了;其实在这个地方还有许多可探讨之处,而且不少学生并没有真正理解。
上公开课,对我来说,感觉就像是“戴着镣铐跳舞”,不敢象平时那样可以根据学生提出的问题任意发挥,生怕因“不小心”临时发挥,无法完成课堂程序。比如,这节课上,有一个“9棵树栽10行,每行3棵的栽法”,
如果从这个题目引开来,同样有许多“中心对称图形”的变化,但是,进行这个内容就必然会影响这节课的课堂设计,当时,我就忍着割舍掉去进行安排好的内容。虽然上课之前自己已经充分准备好自己的`上课内容,教学环节的处理都已经安排好,课堂上问题的设置,
问题的回答会出现什么问题一般都能预料到的,可是在实际上课时,往往会有一些问题是出乎预料的;当一个学生提出一个问题或一种新的解法时,老师则可能因时间的问题而暂时放下不管,这会极大地挫伤学生的求知欲望;如果这些问题能得到圆满地解决,就会激发提问题的学生对数学学习的信心和成就感。何况我们面对的是很有思想的学生,现在的孩子聪明程度是相当高的,特别是这些学生是你教过一年、两年后,你的许多解题思想、习惯性解题思路已经被他所熟知时,他处在了“知己知彼”的位置,再加上学生多、思考方式也多,因此课堂上我从不敢轻视学生们提出的问题及对某个问题发表的看法。这就造成了,公开课上既希望学生有问题,但又怕学生提出一个意想不到的问题。
我一直认为知识是在课堂上逐步生成的,不是死的,这才是课堂的“血和肉”,不应该为了追求课时内容的完整,忽略课堂效果,学生学习能力的提升才是课堂真正的高效,即所谓“授之以鱼,不如授之以渔”,也是我们做教师的最终目的。
我曾经在一次听课时看到这样一堂课:一个语文老师在上一个公开课时,因为内容需要,老师描绘了一个诗人在某一优美意境中即兴创作了一首诗,当时就有一个学生提出朗诵一下自己的一首诗,后来竟然出现班里大部分学生都要求做诗,没有想到这个老师竟然答应了,这节课后来竟上成了赛诗课。你怎样评价这样的一节课呢?但是,学生们乐意,参与度也特别高,我感觉这节课孩子们的收获是不小的,比老师中规中具地上一节课更能激发学生对语文的热爱。
(二)公开课中的“假活跃”与“真沉闷”
有时,公开课上有的问题设计导向性太明了,干涉或控制了学生的思维,明显带有程式化,缺乏教学过程中应有的生气。课堂上有一段时间,学生好像成了配合我上课的配角,没有给足学生应有的思考空间,失去了学生的主体作用。教学过程中学生只是被动的回答问题,很少主动的提出问题;特别是教师一对多的问答,其实一问一答的机械形式,是一种无实质性交往的“假”对话,是一种变相的灌输式教学,后果是:看着热闹,实则沉闷。人的好奇心是天生的,初中学生的认知特点决定了他们拥有探求新异事物的天然需要。孔子说:“知之者,不如好之者;好之者,不如乐之者”,他强调的就是兴趣。兴趣就是学生积极探索某种事物的认识倾向,这是大家所熟知的一条真理;教师在课堂教学中如能恰当地运用情境激起学生的兴趣,可以取得很好的教学效果。但是,教师上课时,往往讲的有点多而让学生思考、提问、交流的有点少,无论是学生与学生之间或是老师和学生之间,交流意味着上课不仅是传授知识,而是一起分享理解,促进学习,你有一个思想、我有一个思想,经过交流都有了两个思想或碰撞后的多个思想;上课不仅是单向的付出,而是生命活动、专业成长和自我实现的过程。
上课时,引发学生的探究兴趣、给学生以信心,是老师的一个重要任务。
课后的一点反思,和大家共同交流。
《轴对称图形》是一个较抽象的概念,“识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美”是课程标准中对这一内容的要求。在这节课中,采用多媒体演示、实物教具,让学生在折一折、猜一猜、画一画、剪一剪等动手操作活动中,培养学生的观察、想象和表达的能力。
一、谈谈自己对这节课的教学理解:
教材没有给出轴对称图形的严格的数学定义,只是让学生通过直观理解轴对称图形的特征,如沿对称轴对折后两边完成重合(或用学生最常用的语言说:对折后两边都一样)来描述对轴对称图形的理解。而对于“在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等”的性质,则是安排在三年级下册进行教学,因此这节课认识轴对称图形是为以后进一步研究轴对称图形做铺垫,按照新课标要求,本学期安排认识轴对称图形的教学中,不再要求学生画对称轴,而是通过对折,观察展开的剪纸上的折痕来理解对称轴的含义。
二、我设计的教学环节:
(一)从直观的生活情景引入教学。
我创设了帮老师挑选风筝的生活情景,让学生通过观察,对比,从中获得对物体的对称现象的空间概念的理解,化抽象为形象,变空洞为具体,使学生初步感知生活中的对称现象。找出生活中的对称现象,从而渗透“生活中处处有数学”的`新的“数学思想”。
(二)动手操作,理解新知。
此环节是通过对“对称”现象的理解后,通过动手折一折,让每位学生都参与活动,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时利用多媒体的动画演示,通过直观的演示,让学生初步感知什么是“完全重合”,自主去建构“轴对称图形”的概念,当然这时的表述是不具体的,老师适时点拨,进行示范,规范学生的数学语言,反复让学生折一折,说一说,“像这样对折后,两边完全重合是轴对称图形”。最后再次让学生动手操作,两人一组,判断剩余图形是不是轴对称图形。
(三)猜一猜,剪一剪,运用新知。
“猜一猜”游戏,出示物体、图形的一半,想象另一半,不仅加深对轴对称的认识,还为“剪一剪”活动提供了素材。
“剪一剪”活动,我是先让学生讨论制作轴对称图形的这个动手操作环节,充分培养学生的观察能力、想象能力及表达能力,这样能充分锻炼学生的空间思维的发展,把对称应用到实际中。展示作品,通过欣赏同学的作品,感受数学中对称这一应用让生活变得美丽。此时我利用学生的作品引导学生用自己的话来描述什么的图形是轴对称图形,找出对称轴。
(四)拓展,欣赏生活中的对称美。
三、不足及改进地方:
1、轴对称图形定义引出太早。针对此知识构建教学环节可以略作调整,先建构“对称”,通过动手折“对称图形”的平面图形后,观察留下的折痕,认识对称轴,再出示轴对称图形定义。这样定义会扎根学生脑海。
2、课堂上舍得花时间培养学生的动手能力、表达的能力却占有了探究“圆是不是轴对称图形,它有几条对称轴。”但我想数学课上知识学的不在多少,重要的是学生掌握了学习的方法。虽然此环节没有按计划完成,倘若孩子们的兴趣高涨,有了验证的方法,这个问题课下不就迎刃而解了吗?
(一)师:同学们,我们已学过哪些平面图形?(根据学生回答分类板书)
师:请拿出按照课本P145剪下的8个平面图形,说说哪些图形是轴对称图形,然后再想办法验证。
(学生先猜测,然后动手折图验证,最后举手回答。)
生:第一个图形是等腰三角形,它是轴对称图形,有一条对称轴。
师:你是怎样验证的?(学生动手演示)
师:如果是等边三角形呢?也有一条对称轴吗?
生:它是轴对称图形,有3条对称轴。
生:第2个图形是平行四边形,平行四边形不是轴对称图形。
师:是不是所有的平行四边形都不是轴对称图形?
生:(齐答)是。
生:猛地站起一名学生,激动地说:“我认为刚才大家说得不对。有的平行四边形是轴对称图形。”
师:你说说看。
生:(边说边演示)用刚折的两个等腰三角形拼成了一个平行四边形,这个平行四边形就是轴对称图形,并且有两条对称轴。
师摸着这个孩子的头,高兴地说:“你真是一个爱动脑筋的‘数学大王’?”
(二)师:学习了轴对称图形,我们可不可以进行一些创造发明呢?
生:可以!
师:下面就请大家发明聪明才智,动手创造吧。
生:将一张长方形的纸对折,然后沿折线在纸上画半个树叶,用剪刀剪下,再打开,就变成了这片美丽的`树叶。
师:它有几条对称轴?(一条)
生:我将一张长方形纸对折,再对折,然后以两条折线的交点为中心画一个扇叶,将扇叶剪下来打开,再打开,就成了这个风扇了。它有2条对称轴。
生:我先将纸对折,然后沿线画上老师的半张笑脸,剪下来打开,就变成了老师的整个笑脸。祝老师身体健康,笑口常开。
师:老师非常感谢这位同学的祝福,也接受这份十分珍贵的礼物。
反思:
一、注重思维能力和创新能力的发展
对于“平行四边形不是轴对称图形”这个问题,大部分学生头脑中已形成,也包括教师。我认为,片断一中的那个孩子表现堪称“壮举”,因为他面对的是被证明了的事实。“眼见为实”,岂容怀疑?
二、重视培养学生应用数学知识的意识和能力。
综合应用是培养学生主动探究与合作学习能力的重要途径。片断二所展示的画面,已让我们充分感受到了学生应用数学知识的强烈意识以及他们在应用过程中所显露出来的创造力。这充分体现了学生的创新意识和创新能力。
三、突出学生的主体地位,注重师生情感交流。
《新课标》要求我们“以人为本”,这就决定了数学教学适应并促进学生的展。因此,教师只有以学习者的角色去理解学生,才能教好学生。片断二中,学生能向老师赠送自己的作品,充分说明了师生间情感的交融。
讲过《轴对称》这节课,我有了新的认识,以下是我的几点收获:
第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形、对称轴的生活经验,同时为本节课进一步认识轴对称图形的对称轴,探索轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!
第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天研究的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!
第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的.直线是对称轴”。
第四、在处理本节课的重点“在操作中探索轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发现两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清楚地发现对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发现去尝试,尝试才有发现,发现才有创新!耐下心来,总有学生会发现的!
然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发现不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的认识。
第五、在发现对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。
第六、要给学生强调画图的时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。
第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:
1、“找”,找出图形上的端点或者说关键点。
2、“定”,根据对称轴确定每一个端点的对称点。
3、“连”,依次连接这些对称点,得到轴对称图形的另一半。
小学阶段的画图,还是要给学生规范方法步骤的。
我课堂上的组织管理能力还有待提高,如果有学生提出质疑,要及时肯定赞扬,鼓励他的思考过程,思维习惯,久而久之,数学课堂上该有的思考味儿才会越来越浓!
本节课的重点是让学生认识对称轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并找出对称轴。本节课通过剪一剪、辩一辩、折一折、连一连、猜一猜等操作,实现对轴对称图形的理解,突破难点、突出重点,培养了学生的创造性和爱学、善学、乐学的习惯。
一、激发自主学习的动机
动机是学生自主学习的内部动力。在导入新知时,直观、巧妙、激趣。在课的开始,我首先用故事引入,学生都被可爱的卡通图形和故事最后的设问吸引住了,引发了学生浓厚的学习兴趣,使其产生强烈的探究愿望。
二、创设自主的学习环境
教师是思考力的培育者,不是知识的注入者。课堂上,教师应该给学生更多的自主学习的`时间,给学生“玩”的权利,“创”的使命,是课堂教学民主化,让学生在课堂上乐于学数学、用数学。例如,在引入轴对称图形和对称轴概念的时候,让学生自己创作图形,并用剪刀剪下来,让学生自主学习、自主发现,从而突破了本节课的难点。学生在动手中获得了快乐,也获得了知识。
三、重视学生自主学习结果的反馈
对于学生自主学习的结果,教师在课堂上应及时评价。通过评价、鼓励,可以激发学生的求知欲,坚定学生的自信心,交流师生的感情。例如,在巩固环节设计一系列的练习题,让学生通过合作、讨论,得出正确的答案,引导学生说出自己的想法及解题过程,激发了学生的表现欲,使问题清晰化,同时也培养了学生的合作精神。
教后感悟:
这是一节图形课,学生的动手实践是必不可少的,对于二年级的孩子,是非常喜欢动手操作的,所以在上本课之前,我一直担心孩子们是否能按照我的要求来做,是否能够在完成任务后及时停下手里的事情将注意力转移到我的身上来,在课堂上,我并没有用学生习惯的口号“一、二、三,坐端正”,而是让学生模仿我的动作,我往哪边拍三下手,他们也往哪边拍三下手,学生拍好手后,很自然的把手平放,这样既没有打断课堂的教学,同时也让学生的注意力及时的回到了我的身上来,效果还不错。
而本节课也存在一些不足之处:
1.在练习题的讲解中,有些地方讲得还不到位。学生现在的思维还停留在直观上,在找对称轴的时候应将图形放大,用准确的语言引导他们如何画出该图形的对称轴,如:五角星的对称轴是将两个角的顶点相连。这样在以后的运用中,学生才能够准确得将对称轴找出。
2.适当得开发学生的逆向思维,充分理解轴对称图形的概念。当学生指出数字“1”不是轴对称图形时,应该抓住机会,让学生尝试去改一改,将“1”改成一个轴对称图形,这样不仅发散了学生的思维,更加深了学生对这节课重点的理解。
本课教学内容在课本的基础上作了一些调整,包括作线段的垂直平分线、作对称轴、作轴对称图形等内容。
最大的优点是:两个重要的题型能够比较地理解和掌握,已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的`距离相等;已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离和最小相等。
最难处理的问题是第二个典型应用的引导,作法为:作点A关于交直线l的对称点A′,连接A′B,交直线l于点P,证明这个点使距离之和最小很好启发引导,但是为什么能够想到这样作图,是比较难处理的问题,我在设计这个问题时,要求学生把直线想象成镜子(平面镜),由点A经过平面镜看点B,光线经过的路线就是最短的路径,因此,使我们选择了这样的作图方法。更难的应用,已知∠XOY,和角内部的点A,在OX、OY上分别作点B、C,使△ABC的周长最小。引导学生思考时,还是可以把OX、OY看成两面镜子,学生理解起来能够更便利些。
本节课我们采用的是利用《学习单》的先学后教模式上课,先将《学习单》提前一天发给学生。在学生比较充分预习的基础上我们进行课堂教学,从预习情况来看优生基本可以完成简单的作图,如线段、三角形、四边形,包括对称点在对称轴上的简单图形等。中等学生只能画出简单的一些图形,但是对称点在对称轴上的简单图形存在一定难度,中下学生只能做更简单的一些填空题。如果我们提前一天提示学生如何做一个点关于某直线的对称点,还有对称点在对称轴上怎么画等等。学生在预习中的效果会更好,上课的效也会更加好,特别是中下生更有预习的兴趣。
我们的教学设计是以学生自主探究为主,教师主要起引导作用,通过设计一系列的学生活动,一方面充分展示它们的预习成果,另一方面还要充分调动学生学习的主动性,使学生在动手过程中发现问题,提高学生观察发现总结问题的`能力。特别是剪纸活动,使整个课堂气氛非常活跃,学生各显神通,纷纷展现自己的创新能力。在整个教学过程,师生很好的互动,教师设置了大量的问题,学生在动手操作的过程中探索问题的答案,提高自己解决问题的能力,并且对整节课的知识有更深刻的体会和记忆。不足的是这节课的图片欣赏比较多,教师在这一部分花费了较多的时间展示欣赏图片,以致后面操作的时间比较紧,而且由于学生操作的环节比较多,所以纪律方面有点难控制。同时给学生交流讨论的时间不够,有部分学生对做轴对称图形的关键之点理解不够。
随笔:要多给与学生表现的机会,每个学生都希望受到表扬,正因为学生有这种成功的欲望,所以他们都想争取机会展现自己,如果能制造更多的给学生表现的机会,学生的学习动力和兴趣会大大增加的。
这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。
两只小兔到外地旅游,介绍沿途参观的很多著名景物(这些景物都是对称的),带领学生一起畅游了一番,学生在愉悦的气氛中开始观察优美的画面,仿佛身临其境,领略了对称物体之美,从学生熟知的生活情境出发,让学生初步感知对称的事物。这种营造宽松愉悦、开放式的环境,学生纷纷自觉投入到学习活动中,观察这些实物的特点——它们的两边都是一模一样的,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串连教材的效果,让学生在这种欣赏美的教学情景中快乐的学习,激发学生学习数学的兴趣,开拓学生的思维,发展学生的联想、想象能力,引导学生感受美、鉴赏美、领悟美,达到情境交融的教学效果。
本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折,剪一剪,画一画,等一系列活动,让学生多种感官参与教学活动。在新授课时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,从只重视知识的.教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就引入“完全重合”,让学生反复地操作体会,再配合课件的动画演示,初步感知什么是“完全重合”;最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,始终以学生动手操作实践为主导,在巩固练习中也安排了一些学生操作的活动,让学生在操作过程中体会“完全重合”和“不完全重合”的区别,为辨别是否轴对称图形奠定了基础。在最后的制作轴对称图形时完全放手让学生去操作,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
第一课时学习了轴对称图形的有关知识以后,接下来就是今天的第二课时,画轴对称图形的另一半,对于每一个孩子来说,动手能力差空间思维能力差是普遍存在的现象,就比如说简单的一件事,作业本中垫格纸的使用,教师已经要求了孩子们在作业本的使用过程中,要注意书写的格式,以及作业本中的上、中、下部分的留白,可走上一大圈,你仍然会发现,原来孩子们不是不知道,就是不知如何来操作,如果没有一个合适的垫格纸,他们是很难把这项要求做到位的,于是一节课中,我逐一的教孩子们怎样使用垫格纸,也许正是由于我们过多的关注了孩子们的学习,而忽视了孩子们的动手能力,更忽视了孩子们的动手对于智力和生活能力的培养的重要性,才让孩子们面对如此小的问题,竟然不知所措,在教他们的过程中,我也发现了很多孩子也做了,但做的或是相反,或是不知如何下手,在我的内心深处,真的是有一种既焦急,同时,又觉得自己的责任重大的感觉。
接着说这节画轴对称图形的另一半的课堂。我先是提出了研究的问题“仔细观察画在方格中的轴对称图形,你发现了什么?”接下来让他们与小组同学交流,由小组长负责梳理报告,与全班同学交流,接下来的时光,孩子们能够展示出了对称点距离对称轴的距离都是相等的,同时,也让同学们更清楚地知道在轴对称图形中,各个部分与整体之间的关系,接下来的自己画另一半,孩子们展示了自己的画法,一种是找距离,一种是找对称点的方法,最后,让同学们使用找对称点的方法,孩子们在大屏幕前的操作,让同学们又一次得到了正确方法的启示。
整个活动是紧凑的,但其中另外的惊喜才是更可贵的,一是孩子们不由自主地发现,找图形中角的顶点的对称点是非常关键的,二是在方格图中,斜线与横线竖线的'距离是不能用一个标准来衡量的,三是在交流的时候要与大家一起交流,不要顾左右而言它,要能够积极的参与进来,而非是一种想说自己的意见的情况,四是要敢于把自己不同的想法说出来,不要人云亦云。
正是在不断地锤炼中,我们的课堂才会越来越成熟,也正是在不断地打磨中,你才能发现原来我们可以在细微之处做的更好,一是坚持去做,一是不断地用慧眼去发现,在做与思中让自己的课堂更适合孩子们的发展!