《商的变化规律》教学教案设计(精选4篇)
商的变化规律教学设计
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。 教学重点:发现规律,掌握规律
教学难点:利用商的变化规律进行简便计算。教学准备:课件,实物投影,计算器 教学过程:
一、情境——激趣
师:今天我们四年二班全体同学在此与老师一起来上一节数学课,看到你们这么高的积极性,老师呀,想奖励你们小粘贴。谁能帮老师算算,我可以买多少颗小粘贴,能保证咱班60人,每人都有,而且没有剩余呢?
二、探究——建构
(一)探究被除数或除数不变时,商的变化规律
生1:60颗。
师:还有不同的想法吗?教师根据学生的回答板书算式。生2:120颗,120÷60=2(颗)生3:180颗,180÷60=3(颗)师:哦,还有很多不同的可能…… 师:观察这些算式,你有什么发现?
根据学生的回答在算式上表示出商随被除数变化而变化的规律。
师:也就是除数不变,生:被除数扩大(或缩小)几倍,商也要扩大(或缩小)相同的倍数,师板书:
师:看来你们都想多得小粘贴,是吗?可是老师只准备了120颗,我想平均分给4个组的组长,每个组长应该得多少颗粘贴呢?
学生口答算式,教师根据学生回答板书算式。生1:120÷4=30(颗)生2:120÷2=60(颗)生3:120÷1=120(颗)
师:观察这些算式,你又有什么发现?
根据学生的回答在算式上表示出商随除数变化而变化的规律。
师:也就是被除数除数不变,生:除数扩大(或缩小)几倍,商反而缩小(或扩大)相同的倍数。
(二)探究商不变的规律
师:同学们真能干,在解决问题当中,还发现了师指板书:除数不变,生:除数扩大或缩小几倍,商也要扩大或缩小相同的倍数;师:被除数不变,生:被除数扩大或缩小几倍,商反而缩小或扩大相同的倍数。那么要使商不变,被除数和除数应该怎么变呢?请你根据提供的研究素材,以4人小组为单位:
1、根据24÷12=2,在□里填上合适的数,在○里填上符号,(24○□)÷(12○□)=2成立。
(1)写出尽可能多的符合要求的算式?
(2)写完后在小组内讨论、交流:什么情况下商不变。(学生写算式,交流。教师巡回指导并指名将算式写在卡纸上。)
2、反馈:刚才同学们讨论的都很激烈,那么哪个小组愿意上来把你们的研究结果展示一下呢? (生报算式,师:是否正确呢?我们来验算一下。生计算。师:那你们组的研究结果是?生汇报研究结果。师:真的是这样吗?拿出第二个同学的练习纸,找一两道验证)师:这样的算式能写完吗?(生:不能)师:板书:……(24×m)÷(12×m)=2这个算式符合要求吗?(生:符合。师:那m可以是哪些数呢?生:不符合?师:为什么?)
师:那什么情况下商不变呀?(引导学生用自己的语言归纳出商不变规律:被除数和除数同时同时扩大(或缩小)相同的倍数(零除外),商不变,板书:)师:出示:2400……0÷1200……0 = 100个0
1000个0 师:你会计算吗?
三、小结
师指板书说:今天这节课你们所发现的规律就是商的变化规律(出示课题),你认为自己最大的收获是什么?
四、应用——提升
1、师:刚才同学们的表现好极了,下面我们来轻松一下,听个故事(出示相应的画面),故事的名字叫“猴王分桃”。
花果山上风景秀丽,鸟语花香。桃树上挂满了桃子,桃树下坐着一群猴子,它们在等猴王来分桃子。猴王准时来到。猴王说:“给你6个桃子,平均分给3只猴子吧。”小猴子说:“太少了。太少了!”猴王说:“那就给你60个桃子,平均分给30只猴子,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,请您开开恩,再多给点行不行啊?”猴王一拍胸脯说:“那好吧,给你600个桃子,平均分给300只猴子,这下你总该满意了吧?!”这时,小猴子笑了,猴王也笑了。师:同学们,谁的笑是聪明的一笑?为什么?
生:猴王的笑是聪明的一笑,因为猴王利用了商的变化规律把小猴子给骗了,每只猴子还是分到2个桃子。师:你能具体说说?吗? 教师根据学生说的板书: 6÷3=2(只)60÷30=2(只)600÷300=2(只)
师:对!虽然数字变了,但桃子个数与小猴只数之间的倍数关系没有变。我们可不能被表面现象所迷惑,要透过现象看本质。
2、师:其实在我们生活中还有很多有关商的变化规律的例子,我们一起来看看
3、下面的计算对吗? (两道错误的竖式计算)
4、简便运算:(不能列坚式)
2000÷125 5、们再来做个游戏好吗?(抢答游戏)
五、总结:
刚才你们说了有哪些收获,那你对自己和小组的表现满意吗?
《商的变化规律》这部分是在学生学习过除数是一位数、两位数的笔算除 法的基础上进行教学的。这部分知识的掌握,既为后面学习简便运算做准备,也为学生今后学习小数除法、分数和比的有关知识做铺垫。是小学数学中十分重要的基础知识。
通过分析教材,我觉得三个规律要想在一堂课教学中完成,会显得仓促,不利于学生对知识的理解和掌握。三个规律中,商不变的规律是重点,商随除数变化的规律是难点。只有把它弄清楚了,下面的学习才会顺利。因此我将这一节课分为两个课时,第一课时教学商随被除数、除数变化而变化的规律。总结出:“在除法里,被除数不变,除数乘或除以一个数(0除外),商就除以或乘一个相同的数”。“除数不变,被除数乘或除以一个数(0除外),商也乘或除以一个数相同的数”之后,就进行巩固练习;第二课时教学商不变的规律。总结出:“在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变”这个性质,同时补充被除数、除数末尾同时有零时利用这一性质进行竖式的简化。这样就能够使每一部分的内容都足够完整,使学生有足够的时间通过“计算——观察——猜测——交流——验证——总结”完成学习任务,获得的知识足够清楚明白。在学生参与发现规律、探究规律、总结规律、验证规律的过程中,让学生成为学习的主人。同时在观察、思考、尝试、交流过程中,实现师生互动、生生互动。
在教学的过程中,教师要多为学生创造交流和思考的时间和空间。把学习的主动权真正地还给学生。让学生在一种宽松、和谐、民主的氛围中去探索交流,感受学习的乐趣,体验成功的快乐,进而提高学习的兴趣。
一、教材分析:
“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。
二、学生分析
本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。
三、教学目标:
依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。
知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。
能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。
情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。
教学重点:探索与发现商不变的规律。
教学难点:运用商不变的规律进行除法的简便计算。
教法:观察法、对比法。
学法:小组合作交流
教学过程:
一、激趣引思,导入新课
1、创设情境:
秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。
2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一笑?
学生分小组交流。
能把算式列出来吗?
二、探讨新知
1、全班交流。
板书:8÷2=4
80÷20=4
800÷200=4
2、师:在除法算式里,除号左边的8、80、800这些数我们称作为什么?(被除数)
除号右边的2、20、200这些数我们称作什么?(除数)
除得的结果我们又称作什么?(商)
3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)
这节课我们就来讨论“商不变的规律”(板书课题:商不变的规律)
4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?
先独立思考,再和同桌互相讨论
5、汇报:
我们先从上往下看,被除数和除数发生了什么变化?
(被除数从8到80,乘10,除数从2到20,也是乘10;
被除数从80到800,乘10,除数从20到200,也是乘10。)
再从下往上看,被除数和除数又发生了什么变化?
(被除数和除数同时除以相同的数)
6、你能像猴王一样分桃子吗? 试试看,写一些你的算式
( )÷( )=( )
( )÷( )=( )
( )÷( )=( )
7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? 在纸上写一写
8、汇报:重点找一组乘的数不相同
师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。
三、巩固练习,深入讨论
师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了
判断题:(师:听清楚要求:用手势表示对错)
(1)75÷15=(75÷5)÷(15÷5)
(2)90÷30=(90×0)÷(30×0)
师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义)
看来我们要把0特殊对待,写上(0除外)
(3)25×3=(25×4)×(3×4)
师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题?
商不变的规律适合在什么运算中?(除法中)
(4)60÷12=(60÷2)÷12
(5)15÷5=(15+5)÷(5+5)
(6)80÷4=(80×6) ÷(4×2)
师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!
师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?
(除法,同时,相同的数,零除外,教师标出重点符号)
师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律
四、应用知识——星级挑战
1、一星级挑战
看例子:950÷50=(950÷10)÷(50÷10)= 95÷5
请你计算:360÷20=(360÷10)÷(20÷10)=36÷2
8400÷30=(8400÷10)÷(30÷10)=840÷3
师:做了这个练习,你发现商不变性质有什么用?
(我们可以运用商不变规律将末尾有0的除法简化为数字比较小的除法进行口算。)
2、二星级挑战
看例子:550÷25=(550×4)÷(25×4)=2200÷100=22
请你计算: 600÷25 20xx÷125
说一说你是怎样想的?
(还可以运用商不变规律把除数转化成整十整百的,进行简便计算。)
3、三星级挑战,与计算机比比速度
480……0 ÷ 240……0 (99个0)
说一说你是怎么想的?(同学们真棒呀,连计算器算起来都费力的计算题,大家可以轻而易举的解决了,这都是谁帮的忙?商不变性质)看来商不变的规律用处可真大,它可以帮助我们解决生活中的许多实际问题。
五、课堂小结:这节课我们学习了什么?你有什么收获?
板书
商不变的规律
8÷2=4
80÷20=4
800÷200=4
被除数和除数同时乘或除以相同的数(零除外),商不变。
一、教材分析:
“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。
二、学生分析
本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。
三、教学目标:
依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。
知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。
能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。
情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。
教学重点:探索与发现商不变的规律。
教学难点:运用商不变的规律进行除法的简便计算。
教法:观察法、对比法。
学法:小组合作交流
教学过程:
一、激趣引思,导入新课
1、创设情境:
秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。
2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一笑?
学生分小组交流。
能把算式列出来吗?
二、探讨新知
1、全班交流。
板书:8÷2=4
80÷20=4
800÷200=4
2、师:在除法算式里,除号左边的8、80、800这些数我们称作为什么?(被除数)
除号右边的2、20、200这些数我们称作什么?(除数)
除得的结果我们又称作什么?(商)
3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)
这节课我们就来讨论“商不变的规律”(板书课题:商不变的规律)
4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?
先独立思考,再和同桌互相讨论
5、汇报:
我们先从上往下看,被除数和除数发生了什么变化?
(被除数从8到80,乘10,除数从2到20,也是乘10;
被除数从80到800,乘10,除数从20到200,也是乘10。)
再从下往上看,被除数和除数又发生了什么变化?
(被除数和除数同时除以相同的数)
6、你能像猴王一样分桃子吗? ? 试试看,写一些你的算式
( ? ? )÷( ? ? )=( ? ? )
( ? ? )÷( ? ? )=( ? ? )
( ? ? )÷( ? ? )=( ? ? )
7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? ?在纸上写一写
8、汇报:重点找一组乘的数不相同
师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。
三、巩固练习,深入讨论
师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了
判断题:(师:听清楚要求:用手势表示对错)
(1)75÷15=(75÷5)÷(15÷5)
(2)90÷30=(90×0)÷(30×0)
师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义)
看来我们要把0特殊对待,写上(0除外)
(3)25×3=(25×4)×(3×4)
师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题?
商不变的规律适合在什么运算中?(除法中)
(4)60÷12=(60÷2)÷12
(5)15÷5=(15+5)÷(5+5)
(6)80÷4=(80×6) ÷(4×2)
师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!
师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?
(除法,同时,相同的数,零除外,教师标出重点符号)
师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律
四、应用知识——星级挑战
1、一星级挑战
看例子:950÷50=(950÷10)÷(50÷10)= 95÷5
请你计算:360÷20=(360÷10)÷(20÷10)=36÷2
8400÷30=(8400÷10)÷(30÷10)=840÷3
师:做了这个练习,你发现商不变性质有什么用?
(我们可以运用商不变规律将末尾有0的除法简化为数字比较小的除法进行口算。)
2、二星级挑战
看例子:550÷25=(550×4)÷(25×4)=2200÷100=22
请你计算: ? 600÷25 ? ? ? ? ? ?20xx÷125
说一说你是怎样想的?
(还可以运用商不变规律把除数转化成整十整百的,进行简便计算。)
3、三星级挑战,与计算机比比速度
480……0 ÷ 240……0 ? (99个0)
说一说你是怎么想的?(同学们真棒呀,连计算器算起来都费力的计算题,大家可以轻而易举的解决了,这都是谁帮的忙?商不变性质)看来商不变的规律用处可真大,它可以帮助我们解决生活中的许多实际问题。
五、课堂小结:这节课我们学习了什么?你有什么收获?
板书
商不变的规律
8÷2=4
80÷20=4
800÷200=4
被除数和除数同时乘或除以相同的数(零除外),商不变。