您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 教学 > 正文

数学四则运算教学反思【合集6篇】

2023-08-12 09:21:08教学
  • 相关推荐

数学四则运算教学反思【合集6篇】

数学四则运算教学反思

数学四则运算教学反思 篇1

  教学反思学生在第一学段已经接触了有关四则运算的顺序的资料,初步了解了小括号的作用。在本学期里学生将系统地学习四则运算的运算顺序,为进一步学习代数运算做准备,同时也为学生学会列综合算式解决问题,提高学生用数学解决问题的潜力。成功之处:1。设疑激趣,复旧引新。本节课的四则运算是同级运算,由于学生已经具备了相应的一些知识经验。在上课伊始,透过出示四个口算题45+8-2324-8+1027÷3×73×6÷9,让学生说一说每题的运算顺序,学生能够正确说出每题的运算顺序,但是为什么要按照从左往右按顺序计算,学生感到很困惑,不知所以然。正是带着这样的疑问让学生开始新知识的学习,学生感到十分的兴奋,十分想明白其中的缘由,每一双亮晶晶的眼睛都在闪烁着渴望的目光。透过这样的激趣引入,为新知的学习做了铺垫,学生想要解决问题的欲望被充分地激发出来。2。探求解题思飘过程与理解运算顺序的有机结合。本单元的资料都是在解决问题的过程中,让学生经历并感受四则运算顺序的必要性,掌握四则运算的顺序。因此,在教学中,我紧紧围绕运算的算理和算法,让学生说一说先求什么,用什么方法计算?再求什么,用什么方法计算?使解题步骤与运算的顺序结合起来,让学生不仅仅要知

  其然,还要知其所以然,解除学生头脑中存在的困惑。3。多角度思考问题,尝试用不一样方法解决问题。本节课例1的教学,学生能够尝试用三种方法解答,如:72-44+85=113;72+85-44=113;72+(85-44)=113,学生能够正确理解每步列式的实际好处,个性是第三种算法的出现,是学生创新思维的良好体现。虽然开始大部分同学不理解,但是透过简易的讲解,例如:指着第一排的学生说:“先走了3人,又来了5人,实际是多了几人。”学生十分简单地说出答案,然后再联系例1进行说明,学生对这一算法都能够正确的理解。例2的教学,学生也同样用用三种方法解答,如:987÷3×6;6÷3×987;987+987,对于第一种算法学生理解起来比较容易,对于第二种和第三种学生有部分不理解,但是透过学生的讲解,我又用线段图辅助进行讲解,学生能够正确地理解题意。在这两个例题中,学生透过独立思考,合作交流,能够从不一样角度,用多种方法解决问题,不仅仅培养了学生合作潜力,还提高了学生分析问题、解决问题的潜力。不足之处:1。学生的语言表达潜力欠缺。表此刻只会列式,但对于每步算式表示的实际好处还是停留在只会做不会说的层面。2。学生计算潜力欠缺。透过练习的反馈,发现学生计算中存在以下问题:一是计算不细

  心、马虎,有的该进位的不进位,该退位的不退位;二是抄错数导致计算出错;三是计数位不对齐导致计算出错。再教1。减少师生之间一对一地对话,增加生生对话,提高学生口头语言表达潜力。2。习题设计少而精,精选练习资料。

数学四则运算教学反思 篇2

  本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的'关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

  一、直观演示是学生理解分数与除法的关系的前提。

  由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

  爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

  a:你们是几块几块的分的?

  b:每人每次分得多少块饼?

  c:分了几次,共分了多少块?(就是3个块就是几块)

  d:怎样才能看出是几块?

  问题的提出针对性强,有利于学生把握数学的本质。

  三、 用发展的思维去理解所学的知识,注重了知识的系统性。

  数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

数学四则运算教学反思 篇3

  整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“÷2”的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。

  (1)、学习内容来自于生活。

  这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的'问题情景。

  (2)、解题方法来自于学生。

  面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。

数学四则运算教学反思 篇4

  《用比例知识解决问题》是本单元最后一部分知识,是学习了正比例和反比例关系后的实践应用。本节课,在教学中教师力求通过知识的迁移,结合学生的生活经验,让学生借助函数关系间变量的对应规律,正确判断两种相关联的量之间的依存关系,根据它们的正、反比例关系,列出相应的比例式,解决问题。

  在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松,高效地完成了教学任务,反思本节课的成功之处,我有以下三点感悟:

  一、课堂永远是无法完全预设的

  本节课,课前的复习按照预期的设计顺利完成。当我出示例5后,学生默读题目,独立分析后,我鼓励学生自主探索,独立尝试解决问题,不到1分钟,同学们的小手就此起彼伏地浮现在桌面上,个个跃跃欲试,当2名学生将自己的思索展现在黑板上时,我不禁一惊,这两位学生竟然用了不同的解题方法,除了以前学过的归一、归总法,又出现了今天的新课方法,按我预先设计的方案,学生用以前的方法解决后,我将会出示一个自学提示,引导学生按步骤,按思路来用比例解决,学生会顺理成章地理解题意,学会用比例解决。没想到学生自己就能列出正确的比例,我顺势请板演的同学到黑板前讲一讲自己的思考,真没想到,这个孩子讲得头头是道,把我的“活”儿抢了。同学们听了她的讲解,顿时茅塞大开,把我连续出示的两个基本练习做得漂漂亮亮。

  课后我反思这个环节,异常感慨,本来以为丝丝相扣的自学提示,会让学生在老师无形的指挥下,理解正比例应用题的思考方法,没想到一个不到1分钟的独立尝试,就让学生破解了我的预设,而后我的顺势相邀——请学生讲解,却让课程呈现了更为灿烂的.一幕。课堂永远是无法预设的,当出现与预设不相符的状况时,教师一定要会调控,得当的调节能让课堂更加精彩。

  二、错误点就是生成点

  在进行变式练习时,同学们争先恐后地上讲台展示,马小贺同学出现的错误给课堂带来了新的生成,我们习惯应用“总价÷数量=单价”,当单价一定时,可以列成正比例式,而马小贺同学却将等式的左边写成“数量÷总价”,班内同学议论纷纷,我借势引导学生,抓住正比例关系的对应量对等的要点,使一个比例式拓展成了两个,让学生明白了,两个变量之间的对应规律和依存关系。课堂中无意的错误点,生成了新的知识点,让学广开世面,更深层次地理解最简单的函数知识。

  三、真实的课堂,回生阻道

  我喜欢真实的课堂,这节课,课前我一点儿都没有提示前面的知识。课堂上,当提问正比例和反比例关系时,很多学生都有些生疏,对量与量之间的变化规律有些陌生,经过老师提示后,学生们才回想起前面的概念,这部分所用的时间比预先多用了1分钟左右,虽然是大约1分钟的时间,却给我敲响了警钟,知识一定要常温常故,尽量避免学生的回生,更要防止知识的断层。

  反思这节课,给我带来了很多启示,一位好的数学老师必须具备全面、科学调控课堂的能力,及时抓住课堂的生成点,适时点拨,拓展延伸。与此同时,教师还不能忽视知识的前后联系,不能让知识搁浅,做好做实日常工作,让数学思想、数学方法、数学知识扎根学生心中。

  学基础知识和基本技能的落实还不够扎实。这是本堂课呈现的一对矛盾,恐怕也带有一定的普遍性。

数学四则运算教学反思 篇5

  教学《四则运算》,一般是直奔主题,告诉学生混合运算的运算顺序,先算什么,再算什么。然后让学生进行模仿,机械训练,使学生达到计算的准确、熟练。但练习中忘记运算顺序的情况常会出现。单纯的机械训练,学生只会觉得数学枯燥无趣,感受不到数学的应用价值。

  在本单元第一节课的教学中,我尝试给学生提供探索的机会,让学生经历创造的过程,从中体会运算顺序的合理性和小括号的意义。在探索过程中,学生的思维是自主的,学生的选择是开放的,学生的表述也是多样的。

  反思本单元的教学过程,我认为教学的成功之处有以下几方面:

  1.注重学生的自主活动,让学生掌握学习的主动权。

  2.给予学生发展思维的空间,交给学生思考的主动权。

  3.计算教学因解决问题而精彩,帮助学生逐步掌握解决问题的步骤和策略。

  例1、例2是在学生已会计算的基础上总结概括运算的'顺序,运用学生感兴趣的生活问题情景,放手让学生独立思考、自主解决问题。再让学生说说为什么这样列式,进一步掌握分析问题、解决问题的策略和方法,让学生在充分感悟、理解的基础上进行总结,效果好,但作业中,发现有同学没有仔细读题,发生不该有的错误,还有的计算错误,应引起足够的重视。绝大部分的同学能从例题中理解为什么先算乘除,后算加减,然后运用正确的运算顺序计算。但个别孩子运算顺序弄不清,格式有错误,需个别辅导。

  让学生在实践中感知运算顺序,总结运算顺序,学生探索出了多样化的解决策略,并能在运用中创新,教学效果不错。出现的问题:个别学生弄不清运算顺序,需个别辅导,个别学生第一步算好后忘了把剩下的部分按原来的位置照抄下来,有的同学计算正确率不高,需要找出其中的原因,对症下药。

  关于0的运算,加、减、乘学生很容易理解并能够掌握,但除法中0的运算,还是有困难,特别是0为什么不能作除数,学生不太容易理解,应该多举例,加深印象。

  应用题中季度的理解学生还有一定难度,应该重点讲解,同时复习好平均分的意义。

数学四则运算教学反思 篇6

  教学内容:

  P4/例1、例2(只含有同一级运算的混合运算)

  教学目标:

  1. 使学生进一步掌握含有同一级运算的运算顺序。

  2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

  3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

  教学过程:

  一、主题图引入

  观察主题图,根据条件提出问题。

(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

  组织学生提问并对简单地问题直接解答。

(2)根据图中提出的信息,你能提出哪些问题,怎样解决?

  通过补充条件,继续提问。

  1. 滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?

  2. “冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?

  等等。

  先小组交流,再全班交流。

  提示学生可以自己进行条件的补充。

  二、新授

  1. 小组4人对黑板上的题目进行分配解答。

  引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。

  2. 小组内互相说说你是怎样解答的?

  教师巡视并对学生的叙述进行指导。

  3. 全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

(1)71-44+85

=27+85

=113(人)

  71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。

(2)987÷3×6 6÷3×987

=329×6 =2×987

=1974(人) =1974(人)

  第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)

  第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。

  引导学生进一步理解“照这样计算”的意思。

  强调:可用线段图帮助理解。

  教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

  4.巩固练习

(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率

  先个人编题,再两人交换。

  小组合作,减少重复练习。

(2)P5/做一做1、2

  三、小结

  学生就本节课的.学习内容进行汇报。

  这节课我们解决了很多问题,你们都有什么收获?

  教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)

  运算顺序为已有知识基础,让学生进行回忆概括。

  四、作业

  P8/1—4

  板书

  四则运算(一)

  1.滑冰场上午有72人,中午有44人离去,

  2.“冰雪天地”3天接待987人。照这

  又有85人到来。现在有多少人在滑冰? 样计算,6天预计接待多少人? 72-44+85 (1)987÷3×6 (2)6÷3×987

=27+85 =329×6 =2×987

=113(人) =1974(人) =1974(人)

  运算顺序:在没有括号的算式里,如果只有加、减法

  或者只有乘、除法,都要从左往右按顺序计算。

  课后小结:

相关热搜