数学的六年级教案 13篇
下面是范文网小编整理的数学的六年级教案 13篇,以供参考。
教学内容:
义务教育课程标准北师大版试验教材六年级上册第三单元第38页数学欣赏。
教学目标:
1.通过选择生活中有趣而美丽的图案,供学生欣赏,培养学生的审美意识、认识数学的美、体会图形世界的神奇。
2.引导学生尝试绘制美丽的图案等操作活动,使学生获得研究图形的经验。体验学习数学的乐趣,激发学生学习数学的兴趣
重点难点:
1.欣赏生活中美丽的图案,培养审美意识;
2.绘制美丽图案的方法。
教学准备:
三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带、
课件1:生活中美丽图案的视频(课前拍摄我们身边的美丽图案)。
课件2:课本上美丽图案制作的动画演示。
教学过程:
一、创设情境
1.欣赏生活中美丽的图案:播放视频或(图案图片)(包装盒上的图案、门上的图案、建筑物上的造型图案、商标图案、等)
2.你看到的这些生活中的美丽图案,你想说什么?
3.在你的周围你还见到了哪些有趣的图案?
揭示课题:今天,我们来欣赏和制作美丽的图案。
二、欣赏美丽的图案
1.课件展示教材中的图案(也可以选择一些其他的图案)。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?
2.小组内进行交流。
3.小组代表汇报研究结果。(汇报你发现的这些图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的'?)
4.多媒体动画演示图案形成的过程。
5.教师小结。其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。
三、绘制美丽的图案。
1.小组内讨论下面美丽图案是由哪个基本的图形通过怎样的变换而来的?绘制的步骤应该是什么?
2.组长汇报交流的结果。
3.多媒体再次演示绘制的步骤,并阅读课本上绘制的方法;
4.讨论绘制时应该注意的问题。
5.操作活动:开始绘制图案活动,播放轻松音乐,教师巡回参与指导。
四、作品展示和评价
1.作品展示:把学生画的图案全部张贴在教室的四周,全体学生下座位参观作品。
2.学生评价
①选对你印象最深的作品进行评价(可以是画得好的,也可以是画得不好的)。比一比看谁评价得好。
②教师系统评价
五、课堂小结
同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?
教学目标:
1、理解正比例的意义,能够根据正比例的意义判断两个量是否成正比例。
2、了解表示成正比例的量的图像特征,能根据图像解决有关正比例的简单问题。
3、通过观察、实验、计算等方法,逐步理解正比例的意义。
4、在小组合作学习中,发展学生的观察分析、判断推理和抽象概括的能力,初步渗透函数思想。
5、培养学生动手操作、实验、观察等良好的学习态度和习惯。
6、感受数学的魅力,体会数学知识间的联系,感受数学知识在生活中的广泛应用。
教学重点:理解正比例的意义。
教学难点:掌握正比例的量的变化规律及其特征。
教学过程:
一、复习导入
商店里有两种包装的手套,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元,哪种手套更便宜?
学生独立完成后,老师提问:你们是怎么比较的?(求出手套的单价再进行比较)根据哪个数量关系式进行计算的?(单价=总价÷数量)如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。老师板书课题。
二、新授
1、教学例1,学习正比例的意义。
⑴出示例1表格,让学生观察表中的'数据,思考表中有哪两种量?总价是怎样随着数量的变化而变化的?(表中有数量和总价两种量,数量增加,总价增加;数量减少,总价减少。数量扩大到原来的几倍,总价也扩大到原来的几倍;数量缩小到原来的几分之几,总价也随着缩小到原来的几分之几。)
⑵认识相关联的量。
像这样,一种量变化,另一种量也随着变化,这两种量叫做“相关联的量”。
2、计算表中的数据,理解正比例的意义。
⑴计算相应的总价与数量的比值,看看有什么规律。
0.5/1=1.0/2=1.5/3=2.0/4=2.5/5=3.0/6=3.5/7=4.0/8,比值相等。
⑵说一说,每一组数据的比值表示什么?(圆珠笔的单价)
⑶让学生用公式把圆珠笔的总价、数量、单价之间的关系表示出来。
总价/数量=单价(一定)
⑷明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
如果用字母y和x表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:y/x=k(一定)(老师板书)
3、列举并讨论成正比例的量。
⑴生活中还有哪些成正比例的量?让学生说一说。(速度一定,路程和时间成正比例;长方形的宽一定,面积和长成正比例)
⑵小结:成正比例的量必须具备哪些条件?哪个条件是关键?(两种量是相关联的量;一种量变化,另一种量也随着变化;它们的比值不变,这是关键。)
4、认识正比例图像。
⑴课件出示例1表格及正比例图像,让学生观察统计表和图像,你发现了什么?(每一个数量和相对应的总价组成的一组数在图像上都体现为一个点,这些点连起来是一条直线;正比例图像是一条直线。)
⑵把数对(10,5.0)和(12,6.0)所在的点描出来,再和上面的图像连起来并延长,你还能发现什么?让学生操作后发表自己的见解。(这两个点与上面的图像仍能连成一条直线。无论怎样延长,得到的都是直线。)
⑶从正比例图像中,你知道了什么?(可以由一个量直接找到对应的另一个量;可以直观地看到成正比例的量的变化情况)
⑷利用正比例图像解决问题。
买7只圆珠笔总价是多少元?20元能买多少只圆珠笔?(3.5元;40只)
小明买的圆珠笔的数量是小丽的2倍,他花的钱是小丽的几倍?(在单价一定的情况下,数量和总价成正比例关系,小明买的圆珠笔的数量是小丽的2倍,他花的钱也应是小丽的2倍。)
三、巩固应用
1、P46 做一做,引导学生独立完成并汇报交流。
2、P49 2、师生共同完成。
3、P49 4、学生独立完成后,汇报并集体订正。
四、小结:通过本节课的学习,你有什么收获?
教学内容:
教材第75~76页。
教学目标:
1、认识弧、圆心角以及他们间的对应关系,在此基础上认识扇形,并能准确判断圆心角和扇形。
2、理解扇形概念知道扇形有一条对称轴以及圆心角的大小决定扇形面积。
重点难点:
认识弧、圆心角、扇形,能准确判断扇形。
教学设计:
一、导入。
请将手中的两个圆一个平均分成4份剪下其中的一份,另一个平均分成2份剪下其中的一份,观察手中的图形,他们像什么?(像扇子)
今天我们就一起认识扇形。(板书课题:认识扇形)
二、新授。
1、认识弧:出示一个圆,在上面任意点两个点A、B。
(1)A、B两点在什么位置?(圆上)
(2)师:圆上A、B两点间的部分叫弧。课件演示。
(3)追问:圆上A、B两点间的部分叫什么?什么叫弧?
(板书:弧:圆上A、B两点间的部分)读作:弧AB。
(4)请在圆上用彩笔画一条弧。你是怎样画的?(边用手指描弧边说弧AB)
2、认识圆心角:课件演示连接OA和OB 。
(1)线段OA 、OB是圆的什么?(半径)
半径OA 、OB所夹的部分叫什么?(角)
这个角的顶点在圆的什么位置?(圆心)
师:顶点在圆心的角叫圆心角。什么叫圆心角?
(板书 圆心角:顶点在圆心的角)
(2)请学生在圆上标出圆心角。谁是圆心角?(∠A OB是圆心角)
(3)练习:教材76页1题 (略)
3、认识扇形。
(1)画出扇形一圈,我们把围成的图形叫扇形,什么叫扇形?交流
由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。(板书:扇形)
(2)同学之间用手描一下自己手中的圆,互说哪一部分是扇形。
(3)观察桌上剪好的'图形,请你选择其中的一个图形说一说,它是扇形吗,为什么?
(4)师课件演示:黄色部分是什么图形?(扇形)为什么?
4、说一说。
(1)演示:活动的扇形。圆心角一条半径不动,另一条半径不断转动,呈现不同的扇形。当两条半径重合时,形成一个圆。
通过观察,你发现了什么?(扇形是圆的一部分)
(2)在生活中,你见到哪些物体的外形是扇形?
(如:扇子外形、贝壳外形、树叶外形等)
(3)老师也搜集了一些扇形的图片,请大家欣赏一下。
5、第三次用剪好的扇形:请将桌上的每一个扇形对折,你有什么发现?
(扇形是轴对称图形,有一条对称轴。)
整理和复习
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
教学过程:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的.量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
教学内容:
教材2~3页的例1、例2,练习一1~5题。
教学目标:
1、使学生能结合教材提供的素材,自主探索确定物体位置的方法,并能利用方格纸依据数对确定物体的位置或根据平面位置确定物体。
2、在确定位置的过程中培养学生的空间观念,渗透平面坐标最基本的知识。
3、能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。
4、体会生活中处处有数学,感受数学的价值,产生对数学的亲切感。
教学重点:
运用数对准确表示物体位置。
教学难点:
利用方格纸正确表示用数对确定位置。
教学过程:
一、旧知铺垫、导入新课
1、介绍位置
先请若干名学生站上讲台,要求学生说出XX同学的位置。
由学生介绍自己座位所处的位置,然后再介绍几个好朋友所处的位置。
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几座”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。
2、谈话导入
(1)教师肯定以上学生描述的方式。
(2)明确说明本节课我们要进一步学习确定位置的有关知识。
板书课题:位置
二、探索活动,获取新知
1、教学例1
实物投影出示主题图:班级座位图
(1)说一说
学生观察座位图,想说谁的位置就跟同伴说一说。
(2)想一想
师:李刚的位置在哪里?可以怎样说?
学生可能有不同的回答,只要合理都予以肯定。
(3)写一写
请学生用自己喜欢的方式把李刚的位置表示出来
A:学生独立操作,教师巡视课堂,记录不同的表达方式。
B:展示几个不同的表达方式
(4)讨论
师:同样都是李刚的位置,大家表示的.方法却各有不同。虽然所有的方法都有道理,但是总让人感到太麻烦。你有什么好建议,可以用一种统一的既清楚又简便的方法来表示?
确定:列表示竖排,一般从前往后;行表示横排,一般从左往右。
(5)探索用数据表示位置的方法。
结合已有的表示方法“第6列,第3行”,并在学生讨论的基础上教师引导学生认识用数据表示位置的方法。
问:确定一个位置要用几个数据?
A:明确说明:李刚在第6列,第3行可以用(6,3)这样的一组数来表示。
B:学生尝试用这样的方法表示李芳、李小冬、赵强、王宏伟的位置。
要求:
a、先说一说他们分别在第几列第几行,再用数据表示;
b、根据数据再说一说在第几列第几行。
C、总结方法
师、:请你仔细观察这些数据和他们所在的位置,你能总结出用数据表示位置的方法吗?
学生先独立思考,然后与同学交流,再汇报。
归纳:
先看在第几列,这个数就是数据中的第一个数;再看在第几行,这个数就是数据中的第二个数。
2、教学例2
投影出示课本中的“动物园示意图”。这个示意图将各场馆都画成一个点,只反映场馆的位置,不反映其他内容。而且表示场馆的那些点都分散在方格纸竖线和横线的交点上。
(1)观察示意图,说一说那看到了什么。
(2)解决第(1)个问题
师:如果用(3,0)表示大门的位置,你能表示出其他场馆所在的位置吗?
A:学生独立操作,解决问题。
B:投影展示学生解决的结果。
熊猫馆(3,5)
海洋馆(6,4)
猴
山(2,2)
大象馆(1,4)
(3)解决第(2)问题
A:出示要求
在图上标出下面场馆的位置
飞禽馆(1,1)
猩猩馆(0,3)
狮虎山(4,3)
B:学生按要求在书上完成
C:反馈练习结束
学生回答,利用投影展示。
问:如果两个场馆的第一个数相同,说明这两个场馆的位置有什么特点?
灵堂第二个数相同呢?
小结:表示同一列中景点位置的数对,它们的第一个数相同。表示同一行中景点位置的数对,它们的第二个数相同;
3、全课总结
(1)通过这节课的学习,你有什么收获?刚才,我们是怎样探究出用两个数据表示位置的方法的?
(2)教师简要介绍确定位置的方法的重要作用。比如播放有关地球经纬度的知识等。
三、巩固练习
完成教材练习一中的1~5题
第1题:说一说(9,8)中的“9”表示什么?“8”表示什么?按照题目给出的数据,涂一涂
第2题:(1)观察棋盘,与第1题方格图比较,说一说有什么不同。(2)引导学生正确说出黑方的“五”所处的位置。(3)引导学生说出其他棋子的位置,并与同学交流。(4)完成题中第(2)小题,并和同学交流。
第3题:第1小题,用投影展示学生所确定的区域。第2小题,同学之间相互交流表示结果。
第4题:学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。注意提醒学生不要忘了连接EA。
第5题:(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。(2)同桌互相合作,一人描述,一人画图。
板书设计:
位置
竖排叫列,横排叫行
数对(列,行)
设计说明
本课时是在学生已有的知识和经验的基础上,让学生通过收集、整理数据,选择合适的统计图来解决问题。本节课的设计突出了统计图实践性强的特点,通过学生身边的实例,促使学生在自主探究中经历选择统计图的过程。
1.紧密结合学生的实际。
强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,使学生对数学知识理解的同时,在思维能力、情感态度与价值观等方面得到进一步的发展。
2.集体交流,合作学习。
新一轮的课程改革倡导合作交流。因此,在本节课的教学过程中组织一些“合作学习”的活动,使学生在探讨中比较、体会每种统计图的特点,并根据实际问题选择合适的统计图。
3.注重渗透德育于教学当中。
《数学课程标准》强调德育和智育相结合,在教学过程中要时时刻刻地渗透德育。一节课下来,学生不仅学到新的知识,而且在思想上也得到了一定的'提升。
课前准备
教师准备PPT课件课堂活动卡
学生准备搜集24~28届奥运会的相关信息
教学过程
⊙创设情境,激趣导入
师:同学们,你们喜欢看奥运会吗?今天老师带来了北京奥运会期间我国运动员夺取金牌的画面,请同学们欣赏一下。(出示课件)
学生看完后老师提出问题:
(1)你知道是哪一年在北京举办的奥运会吗?
(xxxx年)
(2)在北京举办的是第几届奥运会?(第29届)
(3)我国是从第几届奥运会开始获得奖牌的?(第23届)
师:这节课,老师就带领大家看一看近几届奥运会我国获奖牌的情况。(板书课题)
设计意图:借助同学们感兴趣的奥运画面,创设情境,引入新课,既激发了学生的学习兴趣,又为本节课的深入学习做好铺垫。
⊙合作交流,探究新知
1.读取信息,了解数据。
(课件出示统计表)
第24~30届奥运会我国获金牌情况统计表
届数
24
25
26
27
28
29
30
金牌/枚
5
16
16
28
32
51
38
师:看了这个统计表,你们知道了哪些信息?
师:统计表能呈现出大量的数据信息,有时为了更直观、具体地表示数据的特点,我们往往会把统计表中的相关数据绘制成统计图。我们已经学过三种统计图,分别是什么统计图?
师小结:这三种统计图都有各自的特点,使用时要根据数据的特点和实际需求选择合适的统计图。
2.分析统计图,理解统计图的特点。
(1)引导学生观察这组数据,思考:
要把第24~30届奥运会我国获得的金牌数绘制成统计图,你们觉得应该选择哪种统计图?先自己想一想,再和小组同学交流。
师:哪个小组愿意说说你们的选择?
(我们小组选择的是条形统计图。因为条形统计图可以清楚地看出我国每一届奥运会获得金牌数量的情况)
师:(课件出示条形统计图)观察条形统计图,说一说它的特点是什么。
(能够清楚地看出数量的多少)
师:其他小组还有不同的选择吗?
(我觉得也可以选择折线统计图,这样可以看出这几届奥运会我国获得金牌的数量变化情况)
教学目标
1.使学生知道容积的含义.
2.认识常用的容积单位,了解容积单位和体积单位的关系.
教学重点
建立容积和容积单位观念,知道容积单位和体积单位的关系.
教学难点
理解容积的含义和升、毫升的实际大小.
教学步骤
一.铺垫孕伏.
1.什么是体积?
2.常用的体积单位有哪些?它们之间的进率是多少?
3. 这个长方体的体积是多少?是怎样计算的?
二.探究新知.
我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位.(板书课题)
(一)建立容积概念.
1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)
实验题目:计算出长方体盒的体积.
把长方体盒装满细沙,计算细沙的体积.
2.学生汇报结果.
长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.
细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.
教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?
3.师生共同小结.
教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.
师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)
4.比较物体体积和容积的相同和不同.
相同点:体积和容积都是物体的体积,计算方法一样.
不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.
所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)
(二)认识容积单位.
1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升 毫升)
2.出示量杯:这就是1升的量杯.
出示量筒:这就是刻有毫升刻度的量筒.
3.教师演示升和毫升之间的关系:
①认识量筒上1毫升的刻度,找出100毫升的刻度.
②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.
板书:1升=1000毫升
4.学生演示容积单位和体积单位间的关系:
①把1升的红色水倒人1立方分米的`正方体盒里
小结:1升=1立方分米
②把1毫升的红色水倒入1立方厘米的正方体盒里
小结:1毫升=1立方厘米
5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?
6.反馈练习.
3升=( )毫升 2700毫升=( )升
2.57升=( )毫升 640毫升=( )升
2.4升=( )毫升 3.5升=( )立方分米
500毫升=( )升 760毫升=( )立方厘米
(三)计算物体的容积.
1.教学例1.
一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
8×5×4=160(立方分米)
160立方分米=160升
答:这个油箱可以装汽油160升.
2.反馈练习.
一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?
12×6×5=360(立方分米)
360立方分米=360000毫升
答:这个水箱可以装水360000毫升.
三.全课小结.
这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?
四.随堂练习.
1.填空.
(1)( )叫做容积.
(2)容积的计算方法跟( )的计算方法相同.但要从( )是长、宽、高.
(3)6.09立方分米=( )升=( )毫升
1750立方厘米=( )毫升=( )升
435毫升=( )立方厘米=( )立方分米
9.8升=( )立方分米=( )立方厘米
2.判断.
(1)冰箱的容积就是冰箱的体积.( )
(2)一个薄塑料长方体(厚度不计),它的体积就是容积.( )
(3) 立方分米( )
3.选择.
(1)计量墨水瓶的容积用( )作单位恰当.
①升 ②毫升
(2)3毫升等于( )立方分米.
①0.3 ②0.3 ③0.003
4.一种背负式喷雾器,药液箱发容积是14升.如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?
五.布置作业.
1.手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米.这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)
2.把调查的实际数字填在括号里.
一小瓶红药水是( )毫升.
一瓶墨水是( )毫升
汽车(或拖拉机)油箱的容积是( )升
六.板书设计.
容积和容积单位
容器所容纳物体的体积,就叫做它们的容积.
1升=1000毫升 1升=1立方分米 1毫升=1立方厘米
例6.一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
8×5×4=160 (立方分米) 160立方分米=160升
答:这台油箱可以装汽油160升.
直圆柱也叫正圆柱、圆柱,就是底面和顶面是同样半径(r)的圆,并且两圆圆心的.连线和顶面、底面的互相垂直,并且我们可以得知,圆柱侧面展开图是长方形。
高:h
底面半径:r
底面直径:d
侧面积:S
总表面积:T
体积:V
底面积:A;B
直圆柱:
底面半径:r
底面直径:d
侧面积:S
总表面积:T
体积:V
底面积:A;B
S=
T=
V=
d=2r
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:
负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的'大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论0、1的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的'倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
教材分析
本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.它是小学阶段几何知识的最后部分.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积。
圆锥体是人们生产、生活中经常遇到的形体.教学这一部分内容即能发展学生空间观念,为今后的学习打下基础,又可以帮助学生掌握解决实际圆锥问题的方法。
教材通过直观引导学生观察、实验、判断推理得出圆锥体积的计算公式.这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
根据对过去学生试卷的分析,在计算等底等高圆柱、圆锥体积的变形题中,错误率比较高,主要原因是对等底等高的圆柱、圆锥的体积之间的关系不清,因此教学中对于算理的推导要特别注意。
教法建议
本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积。
教学圆锥的认识,重点是掌握圆锥的特征及各部分名称.教学时首先需要复习已学的圆柱体的特征,然后结合实物,通过对比,使学生掌握圆锥的.特征.教学圆锥的高的测量方法是教学的难点,教师可引导学生猜测、动手实测操作,利用课件演示测量过程,使学生顺利突破难点.教学时要充分的为学生提供自主探索空间。
教学圆锥的体积,重点是体积公式的推导过程.教学时可以按照“演示:利用课件演示圆锥体的形成;猜想:你觉得圆锥的体积和什么立体图形有关系?有什么关系?
操作:通过实验(包括等底等高和不具备等底等高条件的多个实验)引导学生推导圆锥体的体积公式;验证:进行基本计算”四个步骤组织学生创造性学习.教学中通过学生大胆的猜想尝试与创新,自主探究,推导圆锥体的体积公式.教学时要充分的为学生提供创造空间。
教学目标
使学生认识圆锥,掌握圆锥的特征及各部分名称。
教学重点
圆锥的特征及各部分名称。
教学难点
圆锥的高的测量方法。
教学步骤
一、铺垫孕伏
1、出示圆柱体,引导学生说出圆柱体的特征.
2、什么叫圆柱的高,并在实物或几何图形中指出.
3、导入,今天我们学习一个新的几何体——圆锥.(板书课题)
二、探究新知
1、大家在生活中见过圆锥体吗?
2、一个长方形通过旋转,可以形成一个圆柱体,那么你们知道圆锥体是怎样形成的吗?(课件演示:圆锥的形成) 下载
3、圆锥的认识(课件演示:圆锥体的认识)
2、圆锥周围的面是一个曲面(侧面).
3、从圆锥的顶点到底面圆心的距离是圆锥的高
4、测量圆锥的高(课件演示:测量圆锥体的高1或2)
(1)引导学生讨论:圆锥有几条高?
(2)用直尺和三角板如何测量圆柱的高.
5、圆锥侧面的展开图(继续演示课件:圆锥体的认识)
(1)想象圆锥体的侧面展开图
三、随堂练习
1、说出圆锥的特征.
2、说出圆锥各部分名称.
3、指出下列各图是由哪些图形构成的?
四、全课小结
今天这节课你学到了哪些知识?圆锥体和圆柱体有什么区别?
一、教学内容
解决问题的练习课。(教材第39~40页练习八第4、8~10题)
二、教学目标
1、复习“已知一个数的几分之几是多少,求这个数”“已知比一个数多(少)几分之几的数是多少,求这个数”两类分数除法应用题,使学生熟练掌握这两类问题的解决方法。
2、提高学生解决实际问题的能力。
三、重点难点
重难点:熟练掌握这两类分数除法应用题的解题思路和方法。
教学反思
一、基础练习
1、只列式,不计算。(课件出示题目)
(1)一条公路,已经修了300m,是全长的1/3。这条公路全长多少米?
(2)一条公路,已经修了300m,比全长少2/3。这条公路全长多少米?
点名学生回答,并说一说分别属于什么类型的应用题?
2、师:这两类应用题的单位“1”是已知的.还是未知的?可以用什么方法解答?
引导学生回顾这两类应用题的解题思路和方法。
二、指导练习
(一)已知一个数的几分之几是多少,求这个数
教学教材第39页练习八第4题。
(1)学生读题,理解题意,明确应用题类型。
(2)师:第(1)题和第(2)题分别把什么看作单位“1”?
学生独立思考,点名学生回答。
(3)引导学生分析题中的数量关系。
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2r或C=d)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米
(2)直径是3厘米
(3)半径是2分米
(4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动......)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的'高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页做一做的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
3.做第15页练习二的第4题。
四、布置作业
完成一课三练P15的1、2题。
板书:
圆柱的底面周长长方形的长
圆柱的高长方形的宽