您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

小学五年级上册数学教案6篇

2024-05-25 16:35:17综合

小学五年级上册数学教案6篇

  下面是范文网小编整理的小学五年级上册数学教案6篇,以供参考。

小学五年级上册数学教案6篇

小学五年级上册数学教案1

  1、通过“打电话”的情境,体会生活中存在着需要用除数是小数除法去解决的问题,进一步体会数学与生活密切联系。

  2、利用已有知识,经历探索除数是小数的小数除法的计算方法的过程,体会转化的数学思想。

  3、正确掌握除数是小数的小数除法案的计算方法,并能解决有关的`实际问题。

  正确掌握除数是小数的小数除法案的计算方法能解决有关的实际问题。

  教学方法及学生活动设计

  个性调整

  教学重点教学难点教学环节

  问提问生活中有哪个同学一、创设情创设“打电话”的情境,

  有打长途电话的经验。境

  1、出示文主题图,让学生说一说图的意思,并讨论如何解决“谁打电话的时间长”的问题。

  二、自主探2、组织学生探索如何计算4.83÷0.7和45÷7.2的究,创建数得数时,在探索之前,先引导学生比较这两个算式

  和前面学习的小数除法有什么不同,使学生体会到学模型

  如果除数变成整数就好了,引导学生把新的知识转

  化为已有的知识。不同的学生会有不同的想法,但都是要把被除数和除数扩大相同的倍数,使除数变

  成整数,再按照小数除以整书的方法进行计算。1、试一试:其中37。1÷0。53和8。4÷0。56被除

  三、巩固数和除数同时扩大100倍后,被除数末尾需要补0,与应用2。7÷7。5被除数和除数同时扩大10倍后,被除数

  比除数小,商的整数部分需要补0,在练习后反馈时要引起学生的注意。

  2、练一练/1,2,3——补充练习:

  1、把下面各题变成除数是整数的除法:4.68÷1.2=□÷122.38÷0.34=

  □÷□5.2÷0.325=□÷325161÷0.46=□÷□2.笔算。6.84÷0.91225.84÷1.799.6÷41.5

  220.5÷147

  3

  4

  一、创设情境二、自主探究,创建数学模型三、巩固与应用

  呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。

  首先引导学生进行解答。由于货币的最小单位一般是“分”,以“元”为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。

  1、试一试,可以让学生用计算器算出得数,然后根据得数按要求用四舍五入法求出近似值。2、练一练:P71/1,2,3,4

  第1题:这是人民币和港币的兑换,12.5÷1。07,

  四、总结。超过了11元港币;也可以用兵1×1.07,不到本世

  纪末2元,因此11元港币不够。

  第2题:这是人民币和日元的兑换,要注意的是:5000×7.09所得到的近似值还需要去乘100.第3题:这是欧元换人民币,5000×9.15=45750元不需要近似值.

  根据学生的练习情况进行小结.

小学五年级上册数学教案2

  教材类型:

  苏教版。

  所属学科:

  数学。

  教学目标:

  1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  4.增长学生的自然知识,产生热爱自然,享受自然的情感。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  温度计、练习纸、卡片等。

  教学过程:

  (一)游戏导入,感受生活中的相反现象。(放在课前)

  1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄式度(零下10摄式度)。

  2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  (二)教学例

  1.认识温度计,理解用正负数来表示零上和零下的温度。

  ⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。

  那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

  问:好,现在你能看出南京是多少摄式度吗?

  学生交流:是0℃。

  师:你是怎么知道的?(那里有个0,表示0摄式度)。

  没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。

  谁来温度计上表示出0℃。

  ⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)

  上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。

  ⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)

  北京又是多少摄式度呢?

  与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)

  你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)

  你能在温度计上拨出来吗?

  ⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

  对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的`4℃也就是+4℃。(板书)

  北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  ⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)

  师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?

  香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。

  哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。

  西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?

  ⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)

  指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?

  谁能在温度计上拨出11℃?谁来拨-1℃?

  小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  (三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。

小学五年级上册数学教案3

  教材说明

  密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。

  整个实践活动分为两个层次:

  1.通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。

  由于学生已经了解了密铺概念,教材不再给出密铺的概念及图案,而是直接呈现了学生熟悉的6种平面图形(即圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形),并提出问题哪些图形可以密铺。接着,让学生利用附页中的图形,通过小组合作的形式,任选一种图形拼一拼、铺一铺,探索并找出可以密铺、不能密铺(圆形、正五边形)的平面图形,进一步理解密铺的特点。找出可以密铺的平面图形后,再让学生实际铺一铺,在操作的过程中感受密铺,并感受这些图形的特点。

  需要指出的是,这里每次密铺的基础图形都是大小和形状相同的同一种平面图形,两种或两种以上平面图形拼接在一起,也能进行密铺,但教材并不做要求。

  2.综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。

  这部分内容包括三部分:

  (1)从实际出发引出问题,让学生从两组瓷砖中任选一组在方格纸上设计密铺图案,体验用数学的乐趣。这里的两组瓷砖,一组由两个形状和大小相同、颜色不同的等腰直角三角形组成,另一组由一个平行四边形和一个直角三角形(一条直角边的长度等于平行四边形长边所在的高)组成,前一组密铺可以是用同一种基础图形将平面密铺,后一组密铺则是用两种基础图形密铺平面。

  完成设计的方式,可以由学生在方格纸上画出,也可以由教师准备好相应的图形卡片,让学生拼出。建议学生在画或拼摆密铺图案时,要有序地进行。

  (2)综合运用有关密铺、面积等方面的知识,统计自己在方格纸上设计的图案中,每种基础图形一共用了多少块,以及所占的面积,运用所学的知识解决生活中的实际问题,进一步体会数学和现实生活的'联系,发展学生解决实际问题的能力。

  (3)让学生利用附页中提供的图形,自由地设计密铺图案,这种图案可以由一种或两种基础图形组成(也可以由多种基础图形组成,尊重学生的选择,但不要求),通过学生的创作及交流,开拓学生的思维,培养学生用几何图形进行美术创作的想像力,让学生体验自己创作的数学美,培养学生学习数学的兴趣及学好数学的信心。

  教学建议

  (1)这部分内容可以用1课时进行教学。主要是在数学活动中,借助观察、猜测、验证等方式解决问题。

  (2)教师可以在课前搜集一些密铺的图案,也可以事先让学生在生活中寻找一些密铺图案,课上展示给大家,以此帮助学生复习已了解的密铺知识,从直观上为学习新内容做好准备。搜集的图案可有多种,如由形状和大小相同的一种基础图形组成的密铺图案,两种或两种以上基础图形组成的密铺图案,不规则图形组成的密铺图案等。呈现图案后,可以引导学生观察,这些密铺图案是由什么基础图形组成的?

  (3)教师提出问题如果密铺平面时只用一种图形,比如圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形(同时出示该图形的彩色卡片并贴在黑板上),请你们猜猜看,哪种图形能用来密铺?引导学生进行猜测和想像,然后再通过铺一铺等操作活动进行验证并获得结论。或者先让学生想一想他们见过的哪些图形能够用来密铺平面,教师根据学生说出的图形呈现相应的图形卡片,然后围绕学生说出的图形,让学生以小组合作的形式动手拼摆,找出哪些图形可以密铺,哪些图形不可以密铺,验证自己的猜测是否正确。

  (4)学生汇报验证的结果,并让学生任选一种可以密铺的图形铺一铺,上台展示并与大家交流拼的过程,加深学生对密铺的理解以及对图形性质的认识。

  (5)在学生了解可以密铺的图形后,教师可以直接提出问题,让学生用密铺的知识设计地砖图案;也可以先请学生说一说,生活中哪里用到了密铺。学生可能会有很多答案,大致包括建筑(地砖、篱笆和围墙)、玩具、艺术(图画)等几个方面,让学生体会数学的广泛应用。然后再让学生任选一组瓷砖,在方格纸上设计新颖、美观的密铺图案。教师在巡视的过程中,让先设计完的学生数一数自己设计的图案中,不同的基础图形分别用了多少块,所占面积是多少。

  (6)展示作品过程中,引导学生比一比,看看谁的设计更美观、更有新意,激发学生之间互评作品,在交流中理解并接纳别人较好的方法。

  (7)汇报交流之后,让学生进行更开放的设计活动,在活动中充分感受数学知识与艺术的密切联系,经历创造数学美的过程。

  (8)要注意,后面的教材中会继续安排有关密铺的内容,例如较复杂些的密铺、密铺的方法等等,因此在这里注意不要拔高要求,如图形能够密铺的条件(同一顶点的各个拼接图形角的和为360)会在中学的教材中介绍,这里就不需要让学生研究。

  参考资料:

  密铺的历史背景

  1619年数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。

  1891年苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。

  1924年数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。

  最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。

小学五年级上册数学教案4

  课型:新授

  教学内容:教材P7及练习二第3、5、6、7、10题。

  教学目标:

  知识与技能:使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

  过程与方法:理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

  情感、态度与价值观:养成认真计算与及时检验的学习习惯。

  教学重点:运用小数乘法的计算法则正确计算小数乘法。

  教学难点:正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

  教学方法:观察、分析、比较。

  教学准备:多媒体。

  教学过程

  一、复习准备

  1.口算。0.9×6 7×0.08 1.87×O

  0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

  指名学生口算,然后集体订正。

  2.思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

  (2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

  3.揭示课题:这节课我们继续学习小数乘法。(板书课题)

  二、情景引入

  1.教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

  学生观察情境图,提取信息:

  所求问题:(鸵鸟的最高速度是多少千米/小时)

  所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)

  思路分析:

  (1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

  (2)追问提高学习新知的兴趣:

  ①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

  ②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

  ③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

  (3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

  让学生独立计算出鸵鸟的最高速度,并集体订正。

  (4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

  学生可能会有以下几种验算的方法:

  ①用原式再计算一遍。

  ②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

  ③观察法:观察小数位数或第二个因数比1大还是比1小。

  ④用计算器进行验算。

  师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

  (5)师:请同学们打开书,看一看书上的.小朋友算得对吗?为什么?

  生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

  师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

  师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

  2.看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

  三、巩固练习

  1.完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

  2.练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

  四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

  作业:5、6、7

  课外作业:教材第9页练习二第10题。

  板书设计:

  求一个数的小数倍数是多少及验算

小学五年级上册数学教案5

  教材说明

  综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

  “量一量找规律”活动由以下四部分组成。

  1.自制实验工具

  学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

  2.收集实验数据

  学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

  3.分析数据

  引导学生观察统计表中的`信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

  4.根据统计结果归纳推理

  根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

  整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

  教学建议

  1. 这部分内容可用x课时进行教学。

  2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

  3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

  4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

  5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

  6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

  7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

小学五年级上册数学教案6

  一、学习目标

  (一)学习内容

  “正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。

  (二)核心能力

  能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。

  (三)学习目标

  1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。

  2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。

  (四)学习重点

  掌握正方体的特征,理解长方体和正方体的关系。

  (五)学习难点

  建立空间观念,形成立体图形的初步印象。

  六)配套资源

  实施资源:《正方体的'认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。

  二、学习设计

  (一)课前设计

  (1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。

  (2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?

  (二)课堂设计

  1.谈话导入。

  师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?

  师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。

  【设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】

  2.问题探究。

  (1)观察模型,探究特征。

  师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?

  (面、棱、顶点,长宽高)

  师:对于正方体,你们准备从几方面来认识?

  生自由发言。

  师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?

  同桌合作,自主探求正方体的特征。

  交流汇报。(汇报时重在交流探究的过程和方法)

  预设:

  ①正方体有6个面,每个面都是正方形并且6个面都相等;

  ②正方体有12条棱,每条棱都相等;

  ③正方体有8个顶点。

  小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。

  (2)制作模型,加深认识特征

  师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。

  用剪好的书本第xx页的正方体展开图做一个正方体。

  展示学生作品分享制作感想。

  【设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】

  (3)对比观察,探究长方体和正方体的关系

  师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。

  交流汇报后,教师用表格的形式进行整理。

  引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。

  3.巩固练习。

  (1)第xx页的做一做。用棱长为1cm的小正方体搭一搭。

  ①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。

  ②用xx个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。

  ③搭一个四个面是正方形的长方体,其余两个面有什么特点。

  4.课堂总结。

  师:通过这节课的学习,你有什么收获?

  小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。