2.4圆的方程教案5篇
一、教材分析
本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。
二、教学目标
1、 知识目标:使学生掌握圆的标准方程并依据不同条件求得圆的方程。
2、 能力目标:
(1)使学生初步熟悉圆的标准方程的用途和用法。
(2)体会数形结合思想,形成代数方法处理几何问题能力(3)培养学生观察、比较、分析、概括的思维能力。
三、重点、难点、疑点及解决办法
1、重点:圆的标准方程的推导过程和圆的标准方程特点的明确。
2、难点:圆的方程的应用。
3、解决办法 充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。
四、学法
在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法。
五、教法
先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。
六、教学步骤
(一)导入新课 首先让学生回顾上一章的直线的方程是怎么样求出的。
(二)讲授新课
1、新知识学习在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合在平面直角坐标系中,圆心 可以用坐标 表示出来,半径长 是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点 的坐标 满足的关系式。经过化简,得到圆的标准方程
2、知识巩固
学生口答下面问题
1、求下列各圆的标准方程。
① 圆心坐标为(-4,-3)半径长度为6;
② 圆心坐标为(2,5)半径长度为3;2、求下列各圆的圆心坐标和半径。
3、知识的延伸根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对圆的标准方程的理解,教科书配置了例1。
例1要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。
(三)知识的运用
例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。由于圆的标准方程含有三个参数 , ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程
(四)小结一、知识概括
1、 圆心为 ,半径长度为 的圆的标准方程为
2、 判断给出一个点,这个点与圆什么关系。
3、 怎样建立一个坐标系,然后求出圆的标准方程。
4、思想方法
(1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。
(2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。
五、布置作业(第127页2、3、4题)
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的`方程为x2 y2=16(y≥0)
将x=代入,得 .
即在离隧道中心线处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
1教学目标
(一)知识与技能:
1、理解并掌握圆的一般方程的形式,会将圆的标准方程化为一般方程;
2、明确圆的标准方程和一般方程的常数之间的关系,会用这种关系求圆的圆心坐标和半径;
3、逐步学会用配方法将圆的一般方程表示为标准方程、
(二)过程与方法:
1、从不同的角度得出圆的方程表示形式,培养学生从多角度认识事物、研究问题的习惯和能力;
2、随着探索研究的不断推进,逐步让学生发现圆的一般方程的特点,培养学生观察、归纳能力;
3、通过一题多解,培养学生发散思维;
4、在合作交流中采用问题呈现的方式,引导学生积极探索,主动学习,培养合作精神、
(三)情感态度与价值观:借助于多媒体课件,让学生感受数与式之间的内部的和谐美,提高学习数学的兴趣、
2学情分析
数学属于“难攻”的科目,学生基础差,学习兴趣不高,缺乏主动性。因此在教学设计上要多考虑学生的实际因素,由易到难,层层递进,激发并引导学生自主学习是教师教学的主要目的之一。
3重点难点
教学重点: 圆的一般方程及一般方程的特点、
教学难点: 圆的一般方程的特点及用待定系数法求圆的方程、
4教学过程
4、1第一学时
教学活动 活动1【导入】教学活动
一、复习与回顾:
1、圆的标准方程
2、圆心在(-1,2),与 y 轴相切的圆的方程、
3、已知圆经过P(5,1),圆心在C(8,3),求圆方程
二、探索研究,引出新课:
1、问题引入: 方程(x+3)2+(y-4)2=6为几元几次方程? (展开整理)
2、将圆的标准方程展开整理:
注意:①圆的方程是二元二次方程; ②x2、y2的系数相等; ③不含xy项。
3、 用配方法将圆的一般方程化为标准方程: x2+y2+Dx+Ey+F=0 ④D、E、F满足
4、 圆的标准方程和一般方程可以相互转化: x2+y2+Dx+Ey+F=0 常数D、E、F与a、b、r之间的关系: r2=a2+b2-F
三、应用举例:
例1:判断下列方程能否表示圆的方程,若能,化成标准方程,写出圆心与半径。
例2:求过三点A(0,5),B (1,-2),C(-3,-4)的圆的方程 (一题多解)
例3、 已知一曲线是与两定点O(0,0)、A(3,0)距离的比为1/2的点的轨迹,求此曲线的方程,并画出曲线、
四,课堂练习:
(1)已知圆x2+y2+Dx+Ey+F=0的圆心坐标是(-2,3),半径为4,则D=,E=F=;
(2)圆x2+y2-2ax-y+a=0表示圆,则a的取值范围是;
(3)圆x2+y2+4x+2by+ =0与X轴相切,则b=;
(4)已知点P在圆C: 上运动,求线段OP的中点M的轨迹方程。
五、课堂小结:
1、圆的一般方程: X2+y2+Dx+Ey+F=0(其中D2+E2-4F>0)、
2、圆的一般方程与圆的`标准方程的关系: 圆的标准方程的优点在于它明确指出了圆的圆心及半径,而一般方程突出了方程形式上的特点、
3、圆的标准方程与二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0的关系: (1)A=C≠0,(2)B=0,(3) D2+E2-4AF>0时,二元二次方程才表示圆的一般方程、
4、圆的一般方程的特点: (1)x2和y2的系数相同且不等于0、 (2)没有xy这样的二次项,因此只要求出了D,E,F就求出了圆的一般方程、
六, 布置作业:
基础题:P99:A组1,2 B组1,2
1。教学目标
(1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;
2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
(2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;
2。使学生加深对数形结合思想和待定系数法的理解;
3。增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。
2。教学重点。难点
(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题。
3。教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2。7代入,得 。
即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2。如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}
由两点间的距离公式,点M适合的条件可表示为 ①
把①式两边平方,得(x?a)2 (y?b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
1.教学目标
(1)知识目标:
1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
(2)能力目标:
1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为,高为3m的货车能不能驶入这个隧道?
[引导]画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)
将x=代入,得.
即在离隧道中心线处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:
1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
答:x2y2=r2
2.如果圆心在,半径为时又如何呢?
[学生活动]探究圆的方程。
[教师预设]方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为①
把①式两边平方,得(x―a)2(y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在,半径为;
(3)经过点,圆心在点。
2.根据圆的方程写出圆心和半径
(1);(2)灵活应用(提升能力)
问题四:1.求以为圆心,并且和直线相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆。
2.已知圆的方程为,求过圆上一点的切线方程。
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是。
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到)。
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程。
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程。
3.求圆x2y2=13过点(-2,3)的切线方程。
4.已知圆的方程为,求过点的切线方程。
(五)小结反思(拓展引申)
1.课堂小结:
(1)圆心为c(a,b),半径为r的圆的标准方程为:
当圆心在原点时,圆的标准方程为:
(2)求圆的方程的方法:①找出圆心和半径;②待定系数法
(3)已知圆的方程是,经过圆上一点的切线的方程是:
(4)求解应用问题的一般方法
2.分层作业:(a)巩固型作业:课本p81-82:(习题)
(b)思维拓展型作业:
试推导过圆上一点的切线方程。
3.激发新疑:
问题七:1.把圆的标准方程展开后是什么形式?
2.方程:的曲线是什么图形?
教学设计说明
圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.
本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了兴趣、增强了信心。