您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

初一数学教案11篇

2024-02-18 11:31:01综合

初一数学教案11篇

  下面是范文网小编分享的初一数学教案11篇,供大家阅读。

初一数学教案11篇

初一数学教案1

  学习目标:

  理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。

  学习重点:

  多项式乘法法则及其应用。

  学习难点:

  理解运算法则及其探索过程。

  一、课前训练:

  (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

  (3)3a2b2 ab3 = , (4) = ;

  (5)- = ,(6) = 。

  二、探索练习:

  (1)如图1大长方形,其面积用四个小长方形面积

  表示为: ;

  (2)大长方形的长为 ,宽为 ,要

  计算其面积就是 ,其中包含的

  运算为 。

  由上面的问题可发现:( )( )=

  多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 以另一个多项式的每一项,再把所得的积 。

  三.运用法则规范解题。

  四.巩固练习:

  3.计算:① ,

  4.计算:

  五.提高拓展练习:

  5.若 求m,n的值.

  6.已知 的结果中不含 项和 项,求m,n的.值.

  7.计算(a+b+c)(c+d+e),你有什么发现?

  六.晚间训练:

  (7) 2a2(-a)4 + 2a45a2 (8)

  3、(1)观察:4×6=24

  14×16=224

  24×26=624

  34×36=1224

  你发现其中的规律吗?你能用代数式表示这一规律吗?

  (2)利用(1)中的规律计算124×126。

  4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。

  (1)设AP= ,求两个正方形的面积之和S;

  (2)当AP分别 时,比较S的大小。

初一数学教案2

  初一上册数学教案,欢迎各位老师和学生参考!

  学习目标:1、理解有理数的绝对值和相反数的意义。

  2、会求已知数的相反数和绝对值。

  3、会用绝对值比较两个负数的大小。

  4、经历将实际问题数学化的过程,感受数学与生活的联系。

  学习重点:1.会用绝对值比较两个负数的大小。

  2.会求已知数的相反数和绝对值。

  学习难点:理解有理数的绝对值和相反数的意义。

  学习过程:

  一、创设情境

  根据绝对值与相反数的意义填空:

  1、

  2、

  -5的相反数是______,-10.5的相反数是______, 的相反数是______;

  3、|0|=______,0的相反数是______。

  二、探索感悟

  1、议一议

  (1)任意说出一个数,说出它的绝对值、它的相反数。

  (2)一个数的绝对值与这个数本身或它的相反数有什么关系?

  2、想一想

  (1)2与3哪个大?这两个数的绝对值哪个大?

  (2)-1与-4哪个大?这两个数的绝对值哪个大?

  (3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

  (4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

  三.例题精讲

  例1. 求下列各数的绝对值:

  +9,-16,-0.2,0.

  求一个数的'绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

  议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

  (2)数轴上的点的大小是如何排列的?

  例2比较-10.12与-5.2的大小。

  例3.求6、-6、14 、-14 的绝对值。

  小节与思考:

  这节课你有何收获?

  四.练习

  1. 填空:

  ⑴ 的符号是 ,绝对值是 ;

  ⑵10.5的符号是 ,绝对值是

  ⑶符号是+号,绝对值是 的数是

  ⑷符号是-号,绝对值是9的数是 ;

  ⑸符号是-号,绝对值是0.37的数是 .

  2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

  请指出哪个足球质量最好,为什么?

  第1个第2个第3个第4个第5个第6个

  -25-10+20+30+15-40

  3.比较下面有理数的大小

  (1)-0.7与-1.7 (2) (3) (4)-5与0

  五、布置作业:

  P25 习题2.3 5

  家庭作业:《评价手册》 《补充习题》

  六、学后记/教后记

  这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

初一数学教案3

  7.3.1多边形

  [教学目标]

  1.了解多边形及有关概念,理解正多边形及其有关概念.

  2.区别凸多边形与凹多边形.

  [教学重点、难点]

  1.重点:

  (1)了解多边形及其有关概念,理解正多边形及其有关概念.

  (2)区别凸多边形和凹多边形.

  2.难点:

  多边形定义的准确理解.

  [教学过程]

  一、新课讲授

  投影:图形见课本P84图7.3一l.

  你能从投影里找出几个由一些线段围成的图形吗?

  上面三图中让同学边看、边议.

  在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

  (1)它们在同一平面内.

  (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

  这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

  提问:三角形的定义.

  你能仿照三角形的定义给多边形定义吗?

  1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

  如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

  2.多边形的边、顶点、内角和外角.

  多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

  3.多边形的对角线

  连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

  让学生画出五边形的所有对角线.

  4.凸多边形与凹多边形

  看投影:图形见课本P85.7.3—6.

  在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

  5.正多边形

  由正方形的特征出发,得出正多边形的概念.

  各个角都相等,各条边都相等的多边形叫做正多边形.

  二、课堂练习

  课本P86练习1.2.

  三、课堂小结

  引导学生总结本节课的相关概念.

  四、课后作业

  课本P90第1题.

  备用题:

  一、判断题.

  1.由四条线段首尾顺次相接组成的图形叫四边形.()

  2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

  3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的.同一侧,叫做四边形.()

  4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

  二、填空题.

  1.连接多边形的线段,叫做多边形的对角线.

  2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

  3.各个角,各条边的多边形,叫正多边形.

  三、解答题.

  1.画出图(1)中的六边形ABCDEF的所有对角线.

  2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

  3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

  4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

初一数学教案4

  一、教学目标

  (一)知识教学点

  1.了解;方程算术解法与代数解法的区别。

  2.掌握:代数解法解简易方程。

  (二)能力训练点

  1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。

  2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

  (三)德育渗透点

  1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

  2.渗透化“未知”为“已知”的化归思想。

  (四)美育渗透点

  通过用新的方法解简易方程,使学生初步领略数学中的方法美。

  二、学法引导

  1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

  2.学生学法:识记→练习反馈

  三、重点、难点、疑点及解决办法

  1.重点:代数解法解简易方程。

  2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

  3.疑点:代数解法解简易方程的依据。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

  七、教学步骤

  (一)创设情境,复习导入

  (出示投影1)

  引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

  师:该问题如何解决呢?请同学们考虑好后写在练习本上.

  学生活动:解答问题,一个学生板演.

  师生共同订正,对照板演学生的做法,师问:有无不同解法?

  学生活动:回答问题,一个学生板演,其他学生比较两种解法.

  问;这两种解法有什么不同呢?

  学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

  师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.

  [板书]1.5简易方程

  (二)探索新知,讲授新课

  师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

  学生活动:踊跃举手,回答问题。

  [板书] 含有未知数的等式叫方程

  接问:你还知道关于方程的其他概念吗?

  学生活动:积极思考并回答。

  [板书] 方程的'解;解方程

  追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,

  师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

  [板书]

  学生活动:相互讨论达成共识(合理。因把x=5 代入方程3x+9=24 ,左边=右边,所以x=5是方程的解)

  【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

  师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

  (三)尝试反馈,巩固练习

  例1 解方程(x/2)-5=11

  问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

  学生活动:思考并回答.(师板书)

  问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

  学生活动:思考并回答(师板书)

  解:方程两边都加上5,得

  (x/2)-5+5=11+5

  x/2=16

  (x/2)*2=16*2

  x=32

  问:这个结果正确吗?请同学们自己检验.

  学生活动:练习本上检验并回答问题.(正确)

  师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

  学生活动:回答这两个问题.

初一数学教案5

  相交线

  课型:新授课 备课人:徐新齐 审核人:霍红超

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性质的探索.

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

  学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、自学指导

  观察剪刀剪布的过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的`角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

  三、 问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

  ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.

  (3).概括形成邻补角、对顶角概念.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  2.:判断下列图中是否存在对顶角.

  小结

初一数学教案6

  教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

  2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

  3,体验数形结合的思想。

  教学难点归纳相反数在数轴上表示的点的特征

  知识重点相反数的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

  4,-2,-5,+2

  允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

  (引导学生观察与原点的距离)

  思考结论:教科书第13页的思考

  再换2个类似的数试一试。

  归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

  培养学生的观察与归纳能力,渗透数形思想

  深化主题提炼定义给出相反数的定义

  问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

  学生思考讨论交流,教师归纳总结。

  规律:一般地,数a的相反数可以表示为-a

  思考:数轴上表示相反数的两个点和原点有什么关系?

  练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

  深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

  强化互为相反数的数在数轴上表示的点的几何意义

  给出规律

  解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

  学生交流。

  分别表示+5和-5的相反数是-5和+5

  练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

  小结与作业

  课堂小结1,相反数的定义

  2,互为相反数的数在数轴上表示的点的特征

  3,怎样求一个数的相反数?怎样表示一个数的相反数?

  本课作业1,必做题教科书第18页习题1.2第3题

  2,选做题教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

  2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

  3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

  课题:1.2.4绝对值

  教学目标1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点两个负数大小的比较

  知识重点绝对值的'概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

  验数学知识与生活实际的联系.

初一数学教案7

  教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的.长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例变式练习

  例1画一个数轴,并在数轴上画出表示下列各数的点:

  例2指出数轴上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面数轴上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面数轴上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学教案8

  教学目标

  1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3,体验分类是数学上的常用处理问题的方法。

  教学难点正确理解分类的标准和按照一定的标准进行分类

  知识重点正确理解有理数的概念

  教学过程(师生活动)设计理念

  探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念。

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

  思考:上面练习中的四个集合合并在一起就是全体有理数的.集合吗?

  也可以教师说出一些数,让学生进行判断。

  集合的概念不必深入展开。

  创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业1,必做题:教科书第18页习题1.2第1题

  2,教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

  念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

  行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

  类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

  课题:1.2.2数轴

  教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动)设计理念

  设置情境

  引入课题教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论问题3:

  1,你能举出一些在现实生活中用直线表示数的实际例子吗?

  2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4,每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结请学生总结:

  1,数轴的三个要素;

  2,数轴的作以及数与点的转化方法。

  本课作业1,必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

初一数学教案9

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的'是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初一数学教案10

  教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

  教学重点:对概念的理解及对数据收集整理。

  教学难点:总体概念的理解和随机抽样的合理性。

  教学过程:

  一、情景创设,引入新课

  上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20xx名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?

  二、新课

  1.抽样调查的意义

  在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

  抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

  2.总体、个体、样本、样本容量的意义

  总体:所要考察对象的全体。

  个体:总体的每一个考察对象叫个体。

  样本:抽取的部分个体叫做一个样本。

  样本容量:样本中个体的数目。

  3.抽样的注意事项

  ①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查20xx名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映20xx名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.

  ②抽取的样本要有随机性.为了使样本能较好地反映总体的'情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在20xx名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.

  总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.

  下面是某同学抽取样本数量为100的调查节目统计表:

  表中的数据信息也可以用条形统计图或扇形统计图来描述。

初一数学教案11

  教学目标

  使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;

  能用有理数估计一个无理数的大致范围,使学生形成估算的'意识,培养学生的估算能力;

  经历运用计算器探求数学规律的过程,发展合情推理能力。

  教学难点

  用有理数估计一个无理的大致范围。

  知识重点

  用有理数估计一个无理的大致范围。

  对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。

  使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。