《最小公倍数》教案【优秀7篇】
本节课,虽然是按照解决问题的一般方法:阅读理解→分析解答→回顾反思进行的;但是,学生学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,感觉还是比较成功的。
1、巧设问题导航,培养学生自主探究的能力
利用生活中常见的事例引出数学问题,为学生提供充分从事数学活动的机会,不仅有效地引发学生的学习兴趣,而且唤醒了学生的已有知识和生活积淀,让学生在操作活动中加强思考与探索,使学生经历了“公倍数”、“最小公倍数”在实际生活中的应用,形成对知识的自我构建,增强学生学好数学的信心,又体念到了学数学的快乐。
2、创设生活情境,内化学生知识应用能力
在巩固练习阶段,通过解决生动具体的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验;在此基础上,再次深化诸如此类问题的一般解决方法:转化成求公倍数和最小公倍数数。
总之,本节课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固,进行了多元化的思维训练,引导得当,点拨到位,是一节高效的课。
求两个数的最小公倍数,有几种情况,一种是大数是小数的倍数,一种是两个数是互质数,还有一种是既不是互质数也不是倍数关系。
对于第三种情况,新课标的要求是用列举的方法一一列举出两个数所有的倍数,再找两个数公有的倍数中最小的。这样教学,对于学生来说好理解,但是,实际教学是有部分学生不好掌握,所以就补充了用短除法求两个数的最小公倍数,效果还是不错。在用短除法的来求两个数的最小公倍数是非常简单的,因为在前面有了求两个数的最大公因数的方法也是用短除法来求的,短除法的方法应该是一致的,重点也是让学生判断是不是除到末尾的两个数是不是互质数了,书本上说把所有的除数和商乘起来,我觉得这样的说明未必太简单了,怎么把这些乘起来就是最小公倍数了呢?其实在这一课的教学中可以更加深入的进行探讨,所有的除数就是两个数公有的因数,所有的商就是不公有的因数,12=2×3×2 30=2×3×2×5 这两个数共有的因数是2、3不公有的因数是2、5,所以他们的最小公倍数是2×3×2×5=60。
我觉得这样的教学才能使学生对最小公倍数理解的更加深透。另外在教学中发现学生对互质的两个数判断不是很熟悉。对倍数关系的两个数,互质数的最小公倍数没有灵活应用。
通过学习,使每一个孩子都能会用不同的方法求两个数的最小众怒难犯倍数。
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2 的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。纵观这节课,学生学得还是比较轻松,掌握的较好。
知识目标:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。
能力目标:在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。
情感目标:会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。
教学重点:理解公倍数和最小公倍数的意义。
教学难点:利用公倍数、最小公倍数解决简单的实际问题。
教学准备:多媒体课件。
学具:若干张长3cm,宽2cm的长方形纸以及边长为5cm,6cm,……,15cm,16cm的正方形纸各一张。
学情分析:这部分内容是在学生掌握了倍数概念的基础上进行教学的。主要是为学习通分做准备。按照《标准》的要求,教材中要注重揭示数学与实际生活的联系。
教学过程:
一、激趣引入,探究已知
师:课前我们来做个报数游戏,看谁的反应最快。
师:请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次,因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。请起立两次的同学报数。(12、24)
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。关于倍数的知识,你还知道什么?
生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
这节课我们就来进一步研究倍数。
二、创设情景,动手操作
1.出示主题图:
师:孔老师家的墙面出现了问题,谁愿意来帮工人师傅解决问题?
读题:这种墙砖长3分米,宽2分米。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?
师:同学们,你们认为解决这个问题要注意什么?
课件出示红色字体:用的墙砖都是整块,用长方形铺一个正方形。
2.合作交流,动手操作
我们根据上面的要求,请小组同学用一些长3厘米、宽2厘米的长方形,来代替瓷砖在正方形纸上,合作摆一摆,也可以画一画,或者算一算,探究正方形的边长可以是多少分米?最小是多少分米?看谁的方法多。一会我们进行展示。
(设计意图:这个材料的选择经过多次的筛选,最终还是用书上的例题,最主要是基于以下两点考虑:一是“铺地砖”这一生活情境学生有一定的生活经验,也具有一定的挑战性,能有效激发起学生的学习兴趣;二是可借助于实物模型,让学生在实践操作活动中加强思考与探索,经历知识的发生与形成过程,完成数学建模)
师:哪个小组愿意展示?
(教师根据学生实物投影展示,出示相关方法的课件)
预设:(1)我用的是计算法,长方形的长为3,宽为2,那么选用的边长得既能除开2,也能除开3。也就是既是2的倍数也是3的倍数。所以我们选用了边长为6厘米和12厘米的正方形,果然成功了,这是我们拼摆的图形。(师引导,像这样的数还有哪些?)
(2)我选用的是摆一摆的方法。我摆的是边长为5厘米、6厘米和8厘米的正方形。其中,边长为5厘米、8厘米的正方形都失败了。只有边长是6厘米的成功了。
(3)我选用的是画一画的方法。是用小长方形去铺边长是6厘米和12厘米的正方形。因为6里面有3个2,所以就在边长为6的正方形边上,既可以画3个小长方形,也可以画2个小长方形。12也是这个道理。像这样的数还有18、24、30……
3.归纳总结
通过同学们的展示,你得出什么结论?
边长是6分米、12分米、是6的倍数的正方形都可以进行铺设。只有既是2的倍数又是3的倍数才可以满足要求。
师:那么这这些答案和长3、宽2有着怎样的关系呢?请用集合图来表示。
填完同学,结合预习的知识。自己说说每一部分表示什么?小组再交流一下。
预设:2的倍数有2,4,6,8,10,12,14…;
3的倍数有3,6,9,12,15,18,…
公倍数有6,12,18,24…
最小公倍数是6。(板书)
师小结:揭示课题:最小公倍数
4.回顾生活。
如果以后再考虑“可以选择边长是几分米的正方形?”我们可以直接?(找公倍数)
那如果解决“边长最小是几分米”呢?(找最小公倍数)
三、拓展提升、实际应用
1.基础题。
2.综合题。
3.发展题。
4.生活中的应用。
四、课题回顾,布置作业
师:同学们,这节课我们学习了什么,你有什么收获?
预设:这节课我们主要认识了公倍数和最小公倍数,掌握了求两个数的公倍数和最小公倍数的方法。
这一知识在实际生活中应用非常广泛,求解最小公倍数的方法也很多。回家搜集整理,下节课展示讲解。
教学内容:
教材第88、89页的内容及第91页练习十七的第1、2题。
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3、培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的意义
教学难点:
自主探索并总结找最小公倍数的方法、
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1、在数轴上标出4、6的倍数所在的点。
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2、引入公倍数。
(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3、用集合图表示。
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4、引人最小公倍数。
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,…
12,24,
4和6的公倍数:
5、引出例1。
前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。
(1)操作探究。
学生任意选择操作方式。
①用长方形学具拼正方形。
②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
(2)反馈并揭示意义。
①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。
③正方形边长还有可能是几?你是怎样知道的?
④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。
思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)
⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。
三、巩固应用,内化提高
(1)画一画,说一说。
小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?
引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。
(2)完成教材第89页的“做一做”。
学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。
(3)独立完成教材第91页练习十七的第2题。
(4)完成教材第91页练习十七的第1题。
指导学生找到写出两个数的`公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3、得到其他公倍数。
四、回顾整理、反思提升。
通过今天的学习,你有什么收获?
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
板书
4的倍数:4、8、12、16、20、24、28、36……
6的倍数:6、12、18、24、30、36……
4和6的公倍数:12、24、36……
4和6的最小公倍数:12
教后反思:
优点:
本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。
不足:
首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的`最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的`方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10