您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

《3的倍数的特征》教案12篇 3的倍数的特征的教案

2024-01-06 13:42:16综合
  • 相关推荐

《3的倍数的特征》教案12篇 3的倍数的特征的教案

《3的倍数的特征》教案1

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的数字,得到24、78、39。

  ⑷判断这三个数是不是3的倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的.和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ② 发现规律,进行归纳

  ⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案2

  1、学习目标

  1.经历探索3的倍数的过程,理解3的倍数的特征。

  2.能判断一个数是不是3的倍数。

  3.在探究过程中发展概括和归纳能力。

  2、学情分析

  学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。

  3、重点难点

  学习重点:经历探索并掌握3的倍数特征的过程。

  学习难点:发现概括出3的倍数特征。

  4、教学过程

  4.1.2教学活动

  活动1【导入】(一)游戏复习、激发兴趣

  游戏复习、设疑导入

  (一)游戏复习、激发兴趣

  同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?

  (课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)

  小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)

  【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】

  第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)

  活动2【活动】二、自主探究,感悟规律

  1、请同学们拿出准备好的`学具百数表,请在表中找出3的倍数,并圈起来。

  2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。

  3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?

  4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?

  把你的发现与同桌交流一下。

  活动3【讲授】学生摸索,教师讲解归纳

  (三)举例验证规律

  师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?

  小组合作学习二:验证、归纳3的倍数的特征

  举例

  各位上的数的和

  是不是3的倍数

  验证摆出的数

  是不是3的倍数

  两位数:

  48

  4+8=12

  √

  48÷3=16

  √

  37

  3+7=10

  ×

  37÷3 有余数

  ×

  三位数:

  四位数:

  2、小组再次讨论总结。

  3的倍数特征:

  (四)、总结规律

  下面小组的验证是否正确?

  看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)

  【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。

  【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】

  活动4【练习】三、闯关比赛:

  闯关比赛:

  3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?

  第一关:下面的数哪些是3的倍数,手势判断。

  92 654 7203

  71 164 20xx

  老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)

  【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】

  第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?

  老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)

  【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】

  活动5【测试】师生闯关

  第三关:师生闯关:

  同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?

  请看,老师取走一个数,(9)这个9位数还是3的倍数吗?

  再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?

  猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?

  你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)

  你能快速发现下面这个数是不是3的倍数?想好就起立。98763963

  【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】

  第四关:猜猜中奖学号

  到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。

  【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】

  活动6【作业】延伸和总结

  四、全课小结:

  1、今天你学会了什么?通过小组合作学习你有什么收获?

  2、我们是通过什么方法得出3的倍数的特征?

  【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】

  五、作业(课后延伸)

  课后可以运用今天所学的方法去探索研究9的倍数的特征。

  【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】

《3的倍数的特征》教案3

  知识与技能:

  1、学生会正确判断一个数是否是3的倍数。

  过程与方法:

  2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  情感态度价值观:

  3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  1、掌握3的倍数的特征。

  2、能正确判断一个数是否是3的倍数。

  教学过程设计:

  一、复习引新

  1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?

  说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?

  2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

  二、探索猜想,初步感知

  师:3的倍数有什么特征?

  1、学生进行猜想。

  (1)个位上是3、6、9的数是3的倍数。

  (2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。

  (3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的`引导。

  2、可能出现的问题。

  (1)猜测个位上是3、6、9的数是3的倍数。

  (2)个位上能被3整除的数且被3整除。

  3、探索猜想。

  (1)学生用3、4、5三个数字组成是3的倍数的3位数。

  (2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。

  (3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。

  4、验证猜想。

  (1)让学生举例子对猜想的结论进行验证。

  (2)在这个环节中,学生有可能也会发现以下情况:

  ①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。

  ②26个位上的数是6,但它不是3的倍数。

  (3)猜想的结论不成立。

  (4)让学生对猜想结论不成立的这个问题提出自己的看法。

  师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。

  三、自主探索,总结3倍数的特征

  1、在质疑中引导学生探究3的倍数的特征。

  师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)

  2、引导观察。

  (1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)

  (2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。

  (3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。

  3、教师引领。

  (1)斜着观察你发现了什么?

  (2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?

  (3)试着概括出3的倍数特征。

  4、总结3的倍数的特征。

  一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。

  5 、检验结论。

  (1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?

  (2)利用100以内数表来验证。

  (3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……

  (4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。

  四、巩固应用

  1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:

  (1)是3的倍数。

  (2)同时是2和3的倍数。

  (3)同时是3和5的倍数。

  (4)同时是2、3和5的倍数。

  2、完成教材19页的“做一做”

  五、课堂小结:

  这节课你有什么收获?

  板书设计:

  3的倍数的特征

  一个数各位上的数的和是3的倍数,这个数就是3的倍数

  教学反思:

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。

《3的倍数的特征》教案4

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的.数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案5

  课题3的倍数的特征

  课时 一课时

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的.主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  六、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。

《3的倍数的特征》教案6

  [教学内容] 3的倍数特征

  [教学目标]

  1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。

  2、发展分析、比较、猜测、验证的能力。

  [教学重、难点] 发展分析、比较、猜测、验证的能力。

  [教学过程]

  一、3的倍数的特征的猜想

  我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。

  二、3的倍数的特征的探究

  让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的'倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。

  引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。

  试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。

  三、练一练:

  第2题:

  让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。

  (1)30、45、54 (2)30、54 (3)30、45 (4)30

  四、实践活动:

  让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。

  [板书设计]

  3的倍数的特征

  3的倍数的特征:这个数各位数字之和是3的倍数。

《3的倍数的特征》教案7

  教学内容:

  教材19页内容,能被3整除的数的特征。

  教学要求

  使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:能被3整除的数的特征。

  教学难点:会判断一个数能否被3整除

  教学方法:

  三疑三探教学模式

  教具学具:

  课件等。

  教学过程

  一、设疑自探(10分钟)

  (一)基本练习

  1、能被2、5整除的数有什么特征?

  2、能同时被2 和5整除的数有什么特征?

  (二)揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

  (三)让学生根据课题提问题。

  教师:看到这个课题,你想提出什么问题?(教师对学生提出的.问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

  (四)出示自探提示,组织学生自探。

  自探提示:

  自学课本19页内容,思考以下问题:

  1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

  2、能被2、3整除的数有什么特征?

  3、能被2、3、5整除的数有什么特征?

  二、解疑合探(15分钟)

  1、检查自探效果。

  按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

  2、着重强调;

  一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

  三、质疑再探(4分钟)

  1、学生质疑。

  教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

  2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

  四、运用拓展(11分钟)

  (一)学生自编习题。

  1、让学生根据本节所学知识,编一道习题。

  2、展示学生高质量的自编习题,交流解答。

  (二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

  1、判断下列各数能不能被3整除,为什么?

  72 5679 518 90 1111 20373

  2、58 115 207 210 45 1008

  有因数3的数:( )

  有因数2和3的数:( )

  有因数3和5的数:( )

  有因数2、3和5的数:( )

  让学生说说怎么找的。

  (三)全课总结。

  1、学生谈学习收获。

  教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

  2、教师归纳总结。

  学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

  板书设计:

  能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

  这个数就能被3整除。

《3的倍数的特征》教案8

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的.数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案9

  教学目标

  1、知识与技能

  理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法

  经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观

  感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点

  【教学重点】

  3的倍数特征。

  【教学难点】

  探究3的倍数特征的过程。教学过程

  教学过程

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的'话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高。下面用数字卡片摆出的数中哪些是3的倍数?在每个数后增加一张卡片,使新的三位数成为3的倍数。

  三、梯度练习,内化新知

  我们已经理解了3的倍数的特征,下面请运用特征来检验我们的实践能力吧!

  1、圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 2222 7203

  2、在下面各数的□里填上一个数字,使这个数是3的倍数,各有几种填法?

  □7、4□2、□44、65□、12□1

  3、用数字1、3、5、能组成几个三位数?哪些三位数是3的倍数?你有什么发现?

  4、将下面这些数进行分类。

  548、15、2707、820、118、452、507、210、462、450

  2的倍数:()3的倍数:()

  5的倍数:()同时是2和5的倍数:()

  同时是2和3的倍数:()

  同时是2、3、5的倍数:

  5、从下面四张数字卡片中取出三张,按要求组成三位数。

  奇数_________偶数__________

  2的倍数______ 5的倍数______

  3的倍数______既是2的倍数,又是3的倍数数___

  6、现在有学生22人,每3个人分成一组,至少再来几个人才能正好分完?

  7、(1)既是2和5的倍数,又是3的倍数的最小两位数是()。

  (2)既是2的倍数,又是3的倍数的最小三位数是(),最大三位数是()。

  四、梳理归纳,回顾总结

  1、这节课你有什么收获?

  知道了3的倍数的特征,一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2、通过什么方法获得了这些知识?

  我们运用了数学上很重要的研究方法“猜想、探索、归纳、验证”研究3的倍数的特征。

  五、知识应用,课外延伸

  生活中有很多的数是3的倍数,找一找。

  课下大家运用“猜想、探索、归纳、验证”的方法,继续研究9的倍数有什么特征?

《3的倍数的特征》教案10

  设计说明

  本课通过动手操作帮助学生发现3的倍数的特征,培养学生大胆猜想、动手实践、归纳概括的能力,同时让学生利用3的倍数的特征解决生活中的一些问题,培养应用意识。本课教学在设计上主要体现以下两点:

  1、一个数是不是2,5的倍数,只需看这个数个位上的数就可以了,而3的倍数的特征则不然,一个数是不是3的倍数,不能只看个位上的数,要把这个数各个数位上的数相加,如果和是3的倍数,这个数就是3的倍数。这样,既发展了学生的思维,提高了认知,又培养了学生动脑、动口的能力。

  2、使学生在原有认知的基础上产生认知冲突,进而产生新的探究欲望,让学生在猜想、操作、验证、交流、反思、归纳的数学活动中获得较为丰富的数学经验,培养学生提出问题、探索问题、解决问题的能力。

  课前准备

  教师准备

  PPT课件、百数表

  学生准备

  百数表、数位表

  教学过程

  ⊙游戏激趣,导入新课

  1、复习导入。

  师:我们已经掌握了2和5的倍数的`特征,下面我们来做一个游戏(游戏要求:师随机说“2的倍数”或“5的倍数”,生根据老师的指令举起自己的学号卡片)。

  提问:什么样的数是2的倍数?(个位上是0,2,4,6,8的数)什么样的数是5的倍数?(个位上是0或5的数)

  2、设问质疑。

  师:请学号是3的倍数的同学站起来。(是3的倍数的同学站起来)同学们猜测一下:3的倍数可能有什么特征呢?

  生猜测结果:(1)个位上是3,6,9的数是3的倍数。

  (2)个位上的数能被3整除的数是3的倍数。

  ……

  师:这节课我们就来探究3的倍数的特征。

  设计意图:

  通过猜想,产生疑问,把学生求知的欲望推向高潮,为新知的探究做好铺垫,为有效地教学创设时机。

  ⊙自主探究,合作交流

  1、圈数探究。

  (1)课件出示书上的百数表,请学生观察。

  师:百数表中圈出的是什么数?

  引导学生发现:是3的倍数。

  (2)请学生在书上的百数表中接着圈出3的倍数。

  快速浏览一遍所圈出的数,说一说3的倍数的个位上是哪些数。

  (3)观察圈出的数,探究3的倍数的特征。

  预设生:3的倍数都排列在几条斜线上。

  师:像判断2和5的倍数那样,只看个位上的数来判断3的倍数可以吗?单独看这些数的个位和十位上的数能发现规律吗?

  引导学生发现:单独看3的倍数个位和十位上的数都没有什么规律。

  2、换位探究。

  引导学生发现:3的倍数与该数各个数位上的数的顺序无关。

  (1)引导学生看两组3的倍数:3,12;6,15,24,33,42,51。

  师:请大家看看这些数各个数位上的数的和有什么特征。

  (2)请学生依次说出这些数的各个数位上的数的和,教师板书。

《3的倍数的特征》教案11

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

  教学目标:

  1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

  2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

  教学重点:

  认识3的倍数的特征。

  教学难点:

  研究并发现3的倍数的特征。

  教学准备:

  准备计数器教具和学具。

  教学过程:

  一、激活经验

  1.复习回顾。

  提问:2和5的倍数有哪些特征?

  回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)

  2.引入课题。

  谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

  二、学习新知

  1.提出猜想,引导质疑。

  引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

  许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

  质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

  2.利用经验,组织探究。

  (1)找3的倍数。

  (2)探索特征。

  3.学生归纳,强化认识。

  追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

  让学生读一读板书的'结论。

  强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

  4.阅读“你知道吗”。

  启发:当你发现3的倍数的特征时,你对数学有什么感觉?

  谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

  交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?

  三、练习巩固

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习五第8题。

  4.做练习五第9题。

  5.做练习五第10题。

  四、课堂总结

  提问:今天的学习你又有什么收获和体会?

  判断3的倍数的方法,和判断2、5的倍数不同在哪里?

《3的倍数的特征》教案12

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、【创设情景,明确目标】(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、【自主学习,同伴合作】(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师评价:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生:9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、总结提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的.数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出下面是3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、【师生共学,交流分享】(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、评价

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  【设计意图】通过教师的点拨完善学生对比的认识。

  五、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

相关热搜