《用字母表示数》教案必备8篇
教学内容:九年义务教育六年制教科书小学数学第九册P86—88页。
教学目标:
1、经历用字母表示数的过程,初步理解用字母表示数的意义,了解用字母表示数的.应用,并能用字母表示简单的运算定律和计算公式。
2、知道含有字母的乘法算式的略写方法及平方的意义及读写法,会根据计算公式用代入法求值。
3、初步了解抽象概括的思考方法,体会特殊与一般的关系,感觉符号化思想。
重点:体会字母表示数的意义,掌握字母表示数的方法。
难点:引导学生抽象概括过程
教具准备:卡片、幻灯片
教学过程:
一、游戏引入
(1)小组游戏:利用四张扑克牌和一些运算符号,算出24点,贴在纸上。
学生分组展示成果,
生:6+10+A+7=24
师:1从哪里来?
生:A是1
师板书:A—1
师板书:用字母表示数
(2)这节课你想了解什么?
二、进行新课
1、用字母表示运算定律。
(1)在数学中见过哪些用字母表示数的例子?
(2)请大家回故一下,我们学过哪些运算定律?(投晾)能用字母表示运算定律吗?学生用字母表示运算定律写在纸上。学生汇报,突出简写。
如a×b=b×a还可以怎样写?(师示范:ab=ba)
(3)比较:用字母表示和用文字叙述。
大家觉得用字母表示怎么样?
小结:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用。
3、用字母表示计算公式。
①过渡:我们也学过一些图形的面积和周长的计算公式,你还记得这几个图形的面积公式吗?请你用字母表示,行吗?(先出示正方形,用字母分别表示每种图形的边长,再出示平行四边形、三角形、梯形)
②一位同学板演,并解释含义。在板演时,其他同学可以提出不同意见。
③示范:a·a可以写成a2,表示两个a相乘,读作a的平方,所以正方形的面积公式一般写成S=a2。
④读一读:3242,说出表示什么意思?等于多少?
⑤自学:P。86~87页有关内容,说说告诉我们哪些知识?
生汇报,师板书:C=a·4=4a
提问:a2与a×2表示的意义相同吗?为什么?(学生讨论)
⑥师小结:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:a+b不能写成ab;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”。
⑦尝试练习。
P87页的“做一做”(投影)
(1)省略乘号,写出下面各式。
a×X=X×X=5×a=X×3=
(2)如果用a表示长方形的长,b表示宽,那么这个长方形的面积S=,这个长方形的周长C=。
集体交流,订正。
4、学习例1。
(2)出示尝试题。
一条红领巾的底是100厘米,高约是33厘米,它的面积是多少?(先写出公式,再把数值代入公式计算)
(师:这道题目老师还没有教,会做吗?这道题与课本第87页例1差不多,请同学们看看书是怎么做的,书写格式又是怎么样?)
(3)学生看书自学例1。
(4)让学生解答尝试题,教师巡视,两位同学上黑板板演。
5、练习:“做一做”
一个长方形的长是8。4厘米,宽是4。6厘米,它的周长是多少厘米?(先写出公式,再把数值代入公式计算)
小结:在利用公式进行计算时,第一,要写出公式,第二,要把字母表示的数值代入公式进行计算,第三,注意结果不写单位名称。(板书)
三、巩固练习。
(1)省略乘号,写出下面各式。
a×b=a×8=b×b=a×1
(2)将意义相同的式子连接起来。
X+X0。3×2
a·a2x
0。32a2
0。3+0。30。3×0。3
四、全课总结,反思提高(5分钟)
今天这节课你这学会了什么?
教学目标:
引导学生理解并掌握加法交换律和加法结合律,并会用字母表示他们,会用加法的交换律和结合律进行简便运算。培养学生观察、分析以及自学的能力,掌握一定的学习方法。
教学重难点:
1、引导学生通过观察比较、自主学习的方式探索、理解并掌握加法结合律。
2、培养学生观察、分析以及自学的能力。
教学过程:
一、课前复习
师:上一节课我们学习了用字母表示计算公式、数量关系,请同学们独立在练习本上完成以下题目:(用字母表示课件出示)
二、新授
1.情境导入
师:同学们,这个寒假我们学校的图书馆又运来了一些新书,现在这些新书已经上架了并被老师们贴上了精美的标签想不想一起去看看?生:想。
2.自主探索
师出示情境图提问:从图上你发现了哪些和我们数学有关系的`信息?生1:科技书有475本。生2:故事书有282。生3:文艺书有225本。
师:同学们的眼睛真亮,发现了这么多的数学信息,那么根据这些数学信息,你能提出那些数学问题?
问题1:科技书和故事书一共有多少本?
问题2:故事书和文艺书一共有多少本?
问题3:科技术和文艺书一共有多少本?
问题4:科技书比故事书多几本?
方法一:(475+225)+282
方法二: 475+(282+225)
师生共同分析两种方法在计算方法、结果、解题思路上的相同点不同点。
指生回答你发现了什么规律?
生:我发现在加法算式中,三个数相加,先把前两个数相加,再加第三个数,或者先把后两数相加,再加第一个数,计算出来的结果是一样的。
师:这个规律在其他算式里是不是也适用呢?请同学们在自己的练习本上试着写几个这样的例子验证一下。
师:刚才我们发现的这个规律叫做加法结合律。你能用自己喜欢的字母把它表示出来吗?在练习本上写一写。(板书:加法结合律) (a+b)+c=a+(b+c)师:学习了加法的结合律,
第七个问题解决了。我们来看第一个问题:科技书和故事书一共有多少本?找两位同学到黑板上做,其他同学做到自己的练习本上。生:它们的加数交换了一下位置,和没变。
师:这就是我们今天学的第二个规律------加法的交换律。两个数相加,交换它们的位置,和不变。
三、总结
谈谈这节课收获了什么?
四、布置作业
课本自主练习第5题
教学内容:
第61—63页
教学目标:
1、让学生理解和掌握用字母表示数的方法,知道含有字母的式子既可以表示数、数量,也可以表示数量关系。
2、会用字母表示数量关系,能求含有字母的式子的值。
3、让学生初步感受用字母表示数的作用和优点,渗透符号化思想。
教学重难点:
1、会用字母表示数量关系。
2、理解含有字母的式子的意义。
教学准备:
班班通、课件等
教学过程:
一、课题引入
1、课件出示四张扑克牌,问同学们,你们认识扑克牌吗?
2、反馈后,要求学生用这四张牌算出24点。
3、反馈后问:刚才算时的11、12、1是哪里来的?
4、反馈后板书:A=1J=11Q=12K=13
5、大家都知道,像刚才牌上的字母A、J、Q、K都表示一个特定的数。想一想,这些字母如果用在别的地方,可不可以表示其他的数?那如果一个数不知道,是否可以用一个字母来表示呢?今天这节课我们就来研究“用字母表示数”。
生活中,有些数字我们不知道它具体是多少,但需要表示出来,这时候我们就可以用字母来表示数。
二、教学新知
(一)
1、郭老师想知道通过两个多月的相处,同学们对老师有多少了解。猜猜老师今年有多大?
2、反馈后不予评价正确与否。
3、要想知道朱老师的年龄,先请个同学说说你今年几岁啦?
4、反馈后说:如果我比他大20岁,那我今年多大?你怎么知道的。反馈后继续问,并板书。
当他1岁的时候,郭老师多大?
当他2岁的时候,郭老师多大?
当他12岁的时候,郭老师多大?
当他A岁的时候,郭老师多大?
在这,A表示什么?A+20表示的是谁的年龄?还体现出朱老师和他年龄间什么关系?
看来这字母表示数真好,一举两得。使问题即简单又明确。
在这里,A可以是几呀?(任何一个自然数)
如果,用b表示老师的年龄,那么,该同学的年龄又该怎样表示?当老师60岁时,该同学几岁?
(二)、看班班通,学习“X只青蛙,X张嘴,X×2只眼睛,X×4条腿”。
(三)练习“试一试”。
1、怎样计算正方形的周长?你能用字母表示吗?
2、生活中你还遇到哪些能用4A表示的问题?
3、你能用字母表示学过的计算公式和运算定律吗?
(四)完成“练一练”第1、2、3、4题。(独立完成)
三、课堂总结:说一说你有什么收获?谈一谈。
四、布置作业
板书字母表示数
A=1J=11Q=12K=13
AA+20表示老师的年龄
XX张嘴X×2只眼睛X×4条腿
“X×4”还可以表示为“4—X”或4X
数字一般写在字母前面
教学目标:
引导学生理解并掌握加法交换律和加法结合律,并会用字母表示他们,会用加法的交换律和结合律进行简便运算。培养学生观察、分析以及自学的能力,掌握一定的学习方法。
教学重难点:
1、引导学生通过观察比较、自主学习的方式探索、理解并掌握加法结合律。
2、培养学生观察、分析以及自学的能力。
教学过程:
一、课前复习
师:上一节课我们学习了用字母表示计算公式、数量关系,请同学们独立在练习本上完成以下题目:(用字母表示课件出示)
二、新授
1.情境导入
师:同学们,这个寒假我们学校的图书馆又运来了一些新书,现在这些新书已经上架了并被老师们贴上了精美的标签想不想一起去看看?生:想。
2.自主探索
师出示情境图提问:从图上你发现了哪些和咱们数学有关系的信息?生1:科技书有475本。生2:故事书有282。生3:文艺书有225本。
师:同学们的眼睛真亮,发现了这么多的数学信息,那么根据这些数学信息,你能提出那些数学问题?
问题1:科技书和故事书一共有多少本?
问题2:故事书和文艺书一共有多少本?
问题3:科技术和文艺书一共有多少本?
问题4:科技书比故事书多几本?
方法一:(475+225)+282
方法二: 475+(282+225)
师生共同分析两种方法在计算方法、结果、解题思路上的相同点不同点。
指生回答你发现了什么规律?
生:我发现在加法算式中,三个数相加,先把前两个数相加,再加第三个数,或者先把后两数相加,再加第一个数,计算出来的结果是一样的。
师:这个规律在其他算式里是不是也适用呢?请同学们在自己的练习本上试着写几个这样的例子验证一下。
师:刚才我们发现的这个规律叫做加法结合律。你能用自己喜欢的字母把它表示出来吗?在练习本上写一写。(板书:加法结合律) (a+b)+c=a+(b+c)师:学习了加法的结合律,
第七个问题解决了。咱们来看第一个问题:科技书和故事书一共有多少本?找两位同学到黑板上做,其他同学做到自己的练习本上。生:它们的加数交换了一下位置,和没变。
师:这就是我们今天学的第二个规律------加法的交换律。两个数相加,交换它们的位置,和不变。
三、总结
谈谈这节课收获了什么?
四、布置作业
课本自主练习第5题
复习目标:
使学生加深对字母表示数的理解,进一步提高字母表示实际问题里数量关系和计算公式的能力,进一步发展符号感。
复习过程:
一、归纳
1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4正方形的面积:S=a×a。
a×4或4×a通常可以写成4·a或4a;a×a可以写成a·a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
二、练习
1、化简:
4X+5X4A-3AB+BB×B
9X-6X-26Y+Y5A×3B8X-X
学生独立完成,口答,集体订正。说说B+B和B×B分别表示什么意思?。
2、完成第4题:
(1)张大妈上集市买苗鸡和苗鸭。每只苗鸡a元,每只苗鸭b元,苗鸡、苗鸭各买了12只。张大妈一共用去()元。
怎样用不同的方法表示,他们之间有什么联系?
(2)王大伯上集市卖西瓜,已经卖掉6筐,每筐x千克,还剩千克。先用式子表示王大伯一共要卖西瓜的千克数,再计算当x=45时,王大伯一共要卖多少千克西瓜?
分析数量关系,怎样求“一共要卖西瓜的千克数?”学生独立完成,板演。注意书写格式,不加单位名称,要写答句。
难点:理解字母表示数的意义。
四、教学过程:
(一)联系生活实际 引入新知
感知用字母表示事物和数。
广告上说的好:“将复杂问题变简单那是贡献!将简单问题变复杂呢?太累!”所以,为了将复杂化简单,生活中常常用字母和字母的缩写表示特定的标志,谁还知道一些类似的例子呢?说说。课件出示CCT、SOS、M等,请同学们说说这些代表什么?它们都用什么表示?
再请看:老师看到这样一组数特有趣:2、4、6、M、10……
你知道M表示多少吗?
【设计意图:尽量从学生已有的生活经验出发,创设生活中生动、有趣的情境来导入新课,强化学生的感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受到数学来源于生活,生活中处处有数学,学生的思维被激活,教师抓住学生的好奇心,依据教材,又创造性地使用教材,使教学内容具有现实性、挑战性, 加深学生对数学的理解。】
(二) 创设活动情境 探索新知
活动一:猜猜年龄
师:今天很高兴与大家共同学习,愿意和老师交朋友吗?请问你叫什么名字?我猜你今年10岁对吗? 你们知不知道老师今年有多少岁?猜一猜。(生:……)请看我给你提供的信息。课件出示:我比你大26岁。根据这一信息你知道什么?
师:现在让我们一块进入时空隧道,研究老师与学生的年龄关系。时空隧道是可以回到过去,也可以展望未来,会研究吗?
师:谁愿意把研究的情况告诉大家?
师:下面请同学们仔细观察这些式子,你发现了什么?能否想办法用一个简单的式子表示你们和老师的年龄关系,学生独立学习。
引导得出:用字母a表示学生的岁数,老师比学生大26岁,那么a+26就是老师的年龄。
师:在这里a表示什么? a+26又表示什么?a可以是哪些数?
当学生回答可以是任意数时,教师质疑:“a为200、210……行吗?”让学生思考,自由议论。在大家认同a不能取任意值时,教师出示一份小资料:“吉尼斯世界记录中”最长寿的人。
师:用字母表示数,有的时候可以表示任意的数,但在表示生活中的数的时候,有时会有一定的范围。因为人的寿命是有限的,所以a不能无限大。
如果你们的年龄为b岁呢?老师的年龄就是(b+26)
延伸:我比同学们大26岁,那么当老师b岁时,你能用含有字母的式子表示出你们的年龄吗?(生:b-26)根据这个式子,请你算一算:当老师55岁退休时,你们多少岁?想象一下那是的你在干什么?
【设计意图:猜年龄活动中,从学生感兴趣的老师猜学生的年龄和学生猜老师的年龄入手,拉近了学生与老师的距离,调动了学生的学习积极性。让学生进入时空隧道来研究师生的年龄关系,留给学生较大的空间,学生有时间思考,有机会实践尝试,在全方位的参与中,充分体验和经历把生活问题转化为数学问题的抽象过程。】
活动二:遨游太空
(1)激趣引入
师:同学们,近年来在我国的航天领域有件什么大喜事啊?中国人飞天的梦想已变成了现实。你知道吗?人类的太空之旅从很早就开始了。请看大屏幕(课件显示)
师:1969年7月21日,美国宇宙飞船“阿波罗11”号登上月球,首次实现了人类登上月球的梦想。刚才你看到在月球上,宇航员是跳着走路的。你知道这是为什么吗?
学生会根据以往掌握的相关知识说明理由。在学生交流的基础上,教师出示有关资料:“在月球上,人能举起物体的质量是地球上的6倍。”由此引入例2的学习。
【评析:不但使学生知道在不同的星球上,引力的大小是不一样的,而且激发了学生努力学习,探索宇宙奥妙的情趣。】
(2)自主学习(让学生阅读第49页)
自学指导:请看第(2)题,看完后说一说表格中左栏和右栏各表示什么?
①写一写:你能用含有字母的式子表示人在月球上能举起的质量吗?
②想一想:式子中的字母可以表示哪些数?
③算一算:图中小朋友在月球上能举起的质量是多少?
④含有字母的乘法算式如何简写?
现在是自学竞赛开始,比一比谁看得认真,坐姿端正、精力集中,3分钟后比比谁学得快、理解得透彻、效率最高?
(3)反馈、交流。
师:表中的χ表示什么?6x呢?
①学生回答“χ”可以表示哪些数后,出示一个小资料(举重记录)使学生再一次体会,在含有字母的式子中,字母的取值是有一定范围的。
②学生算出图中小朋友在月球上能举起的质量后,教师板书:当χ=15时,6χ=6×15=90.使学生掌握求含有字母的式子的值的正确写法。
【评析:让学生在独立思考、自主学习的基础上,掌握用含有字母的式子表示数量的一般方法,同时进一步理解式子中的字母所表示的数是有一定限制的,并能根据字母的取值求出整个式子的值。】
③ 含有字母的乘法算式的简写
在含有字母的乘法算式中,乘号可以用“.”表示或省略不写,省略乘号时,一般把数字写在字母前面。
④ 练习:省略乘号,写出下面各式。
χ×3 5×b χ×8 1×c
④ 你觉得用字母表示数有什么好处吗?
(三)闯关游戏,巩固提高
第一关:步步为营。
1.你能用含有字母的式子说说教室里的事物吗?
【设计意图:在课堂教学中,给学生创设一个创新和实践的学习环境,从学生身边的事件入手,既可激发学生的学习动机和探究欲望,又能使学生的身心得到成功的体验。】
第二关:过关斩将。
2.儿歌接龙
① 出示“数青蛙”儿歌前两句,问:听过吗?谁会数?找几名同学进行接力比赛。
② 比赛。比赛规则:
比赛形式为接力赛,依次往下数,首尾相接;在比赛过程中谁说错了或说的不流畅就被淘汰了,自动坐到坐位上;后边的同学还接着他的说,最后留下的同学将获得冠军。其他同学给当小老师。
③ 采访冠军
你在数青蛙的过程中说的又对又快肯定有什么窍门吧,能把你的决窃告诉大家吗?
④ 总结归纳
这首儿歌谁还能接着往下数吗?谁能把它说完? 为什么说不完?谁能把这首永远说不完的儿歌用一句话创造性地读出来。(n只青蛙n张嘴,2n只眼睛4n条腿。)
第三关:八仙过海 数学日记
星期天上午,妈妈带张华乘公交车去玩。爱思考问题的他发现:上车时,车内投币箱内原来有n元,他们一块上去3人,每人投币一元,现在共有( )元;上车后,车上原来有χ人,到了水产市场门口他们一块下去5人 ,现在车上有( )人。来到水产市场,首先映入眼帘的是可爱的小金鱼,每袋装有a条鱼,3袋一共有( )条。来到市场口,有一家刘香记饺子馆,他馋的直流口水,妈妈问:想吃不?想吃可要先思考问题:“锅里面有m个饺子(m为整十数),每盘装10个,可以装( ) 盘。”张华回答正确,妈妈表扬他。回家后,他和父母一块看体育频道,在这场篮球赛中,小姚叔接连投中χ个3分球,3χ表示( ),爸爸问他:你知道3分球吗?他兴奋地说:就是在3分线外投中一个球,得3分,看来你还是个篮球高手哟!
今天过得真开心!
【设计意图:在这个环节设计了富有趣味性、针对性与层次性的练习,使枯燥的数学教学充满了活力,同时给学生提供了一个广阔的思维空间,真正体现了“人人学有价值的数学”,“不同的人在数学上得到不同的发展”的理念。】
( 四)课堂总结 渗透思想教育
通过刚才的学习,你有什么收获?那你知道是谁发明了用字母表示数的呢?
介绍“代数学之父”韦达,进行思想教育。
【设计意图:通过总结反馈,既使学生巩固了所学知识,又给学生提供了展现自我的机会;最后适时介绍代数之父韦达的故事,让学生在数学家的趣闻中汲取养分,激发学生学习的兴趣,感受数学文化的魅力,提高数学修养,使学习活动升华到更高的境界,让课堂焕发出生命的活力。】
教学内容:
教科书第144~145页的内容和练习三十四的第1~4题,数学教案-用字母表示数和简易方程。
教学目的:
使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。
使学生加深理解方程的意义,会解简易方程。
教学过程
一、复习用字母表示数。
教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。
教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以可以怎样写?S乘以h可以怎样写?(a乘以可以写成a×或a·,不可以写成a。S乘以h可以写成S·h或Sh。)
教师指出:除了不能写成a以外,其他都是对的。
用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。
已知单价和数量,求总价的公式;
已知总价和数量,求总价的公式;
已知总价和单价,求数量的公式。
如果每只圆珠笔的价钱是元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?
教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。
教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)
一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。
教师指名回答。
80+12a
a=15时,80+12a=80+12×15=260
答:商店一共有260千克桔子,小学数学教案《数学教案-用字母表示数和简易方程》。
作教科书第144页“做一做”的题目。
第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。
二、简易方程
复习方程的概念。
教师出示复习题:
下列等式,那些是方程,那些不是方程?并说明理由。
19+25=43 5x+4x+8=35 x-2=8
4×3-18÷3=6 3x+5=7 a+4
学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。
教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的.解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。
复习解简易方程。
例3 解下列方程,并写出检验过程。
3x+5=7 5x+4x+8=35
学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。
教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
做教科书第145页上面的“做一做”的题目。
第1题,让学生独立完成。集体订正时,指名回答并说明理由。
第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。
例4 一个书的1/2比这个数的25%多10,这个数是多少?
让学生独立解答。订正时。指名用口算检验。
做教科书第145页下面的“做一做”的题目。
让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。
三、小结
教师引导学生分别按照复习的过程叙述和小结复习的内容。
四、作业
练习三十四的第1~4题。
数学教案-用字母表示数和简易方程
教学目标:
1、通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式。
2、理解用字母表示数的意义。
3、知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号。
4、使学生学会应用字母公式求值。
教学重点:
用字母表示运算定律和公式;根据字母公式求值。
教学难点:
理解一个数的平方的含义,乘号的简写和略写。
教学用具:
ppt课件
用字母表示数
教学过程:
一、复习旧知,导入新课
谈话:同学们,上节课我们学习了《用字母表示数》,大家对用字母表示数有了初步的认识,在数学中用字母还可以表示什么呢?这节课我们继续学习相关的知识。
师:在学习新知识之前我们先来做一组复习。(课件出示练习题)
(1)指名说一说怎样填,是根据什么运算定律做的。
(2)让学生用语言叙述所使用的运算定律。(课件出示)
二、自主探索,合作交流
(一)活动一:用字母表示运算定律
1、谈话:你能用字母表示这些运算定律吗?拿出准备好的活动表格一,小组合作完成表格。
2、选具有代表性的表格在投影仪上展示。
3、师生共同回顾用字母表示运算定律。
师:这些运算定律可以用数字表示,可以用文字表示,还可以用字母表示,你更喜欢哪一种表示方法?为什么?把你的想法说一说。
4、教师小结:用字母表示运算定律简明易记,便于应用。
5、以乘法交换律为例介绍字母和字母相乘省略乘号的方法(课件出示小精灵说的话)
法一:字母和字母相乘,可以省略乘号,写成.,如:ab=a.b 法二:字母和字母相乘,可以省略乘号不写。如:ab=ab 强调:只有乘号可以省略不写,其他运算符号不能省略。
6、让学生用省略乘号的方法分别表示出运算定律。(师板书简写形式)
(二)活动二:用字母表示计算公式
1、师:字母不但可以表示运算定律还可以表示计算公式。(在题目后板书:和计算公式)
2、课件出示活动要求
(1)先用文字写出正方形的面积和周长公式。
(2)如果用a表示正方形的边长,用s表示正方形的面积,用c表示正方形的周长,请你用字母分别表示出正方形的面积和周长公式。
3、学生试着在活动单上用字母写出周长和面积公式。
4、生汇报:(师板书)
S=a.a C=a.4
5、教师介绍用字母表示正方形和周长的公式及简便写法
(1)S = a2 aa写成a2 读作:a的平方
表示2个a相乘,所以正方形的面积公式一般写成S = a2
(2)C=a4 C=4a
师:a4表示字母与数字相乘,当字母与数字相乘,省略乘号时,一般把数字写在字母的前面。
a.4=4a 可以写作a4吗?(不能,字母和数字相乘,省略乘号数字写在前面,字母写在后面。
练习:用简便形式表示下列各式
bb cc aa mm 99
(3)区分:a2和2a相同吗?它们的区别在哪里?
(三)学习例3(2),会用代入法计算正方形的周长和面积。
1、让学生用以前学习的知识来计算下面正方形的面积和周长。
2、汇报:面积:66=36(cm2)周长:64=24(cm)
3、教学代入法
师:今天老师要教大家一种计算面积和周长的方法。
(1)板演示范正方形面积的代入法计算过程
S = a2 =66 =36(cm2)
(2)小结代入法的步骤:一写出字母公式,二代入数字,三计算结果,注意带上单位名称并写答。
强调:在利用公式求面积或周长时,首先要写出公式,然后把字母表示的数代入公式中,最后进行计算,并带单位,注意等号要对齐。
(3)活动三:让学生按要求独立用代入法计算正方形的周长。
活动要求:
按照计算正方形的面积的方法计算边长为6cm的正方形的周长,再想一想它与我们以前的做法有什么不同。
集体订正并板书:
C=4a =46 =24(cm2)
三、拓展提高,巩固应用
1、省略乘号简写下面的算式
cd= xx= b34= = y1= 99= 2、判断对错。(对的打,错的打,并说明理由)
52=52=10 ()
a+a+a=a+3 ()
c2 =2c ()
= ()
mn=mn ()
3、把结果相同的两个式子连起来。
4、用字母表示长方形的.面积和周长。
5、一个长方形的长是200px,宽是125px,它的面积和周长是多少?
6、小知识。(课件出示)
你知道最早有意识地使用字母来表示数的人吗?
我们就来看一下大屏幕吧。你知道最早有意识地系统使用字母来表示数的人是谁吗?他就是法国数学家韦达。韦达一生致力于对数学的研究,做出了很多重要贡献,成为那个时代最伟大的数学家。自从韦达系统使用字母表示数后,引出了大量的数学发现,解决了很多古代的复杂问题。
四、全课小结
同学们,在今天的学习中,你喜欢用字母表示数吗?
学生自由回答。
如果老师对你们今天的表现打一个分A,你认为属于你的A应该表示多少?说说原因。
学生自由交流。
老师认为你们今天的表现都应该在90分以上,数学王国的宝箱里还有一个宝贝,同学们看。(课件出示)
A = X + Y + Z A表示成功
x表示艰苦的劳动
y表示正确的方法
z表示少说空话
(成功=艰苦的劳动+正确的方法+少说空话)