椭圆及其标准方程(精彩9篇)
【导语】椭圆是一种常见的几何形状,它可以通过标准方程来描述和研究。本文是热心会员“fpb6”收集的椭圆及其标准方程(共9篇),以供参考。
一、教学内容分析(简要说明课题来、学习内容、这节课的价值以及学习内容的重要性)
本节课是高中新课程人教A版数学选修1—1第二章第一单元《椭圆及其标准方程》的第一课时.
本节的内容是继学习圆之后运用 “曲线和方程”理论解决具体二次曲线的又一实例.从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,因此,这节课有承前启后的作用,是本节乃至本章的重点。
二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述)
基于新课标的要求,结合本节内容的地位,我提出教学目标如下:
(1)知识与技能:
①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程; ②使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.
(2)过程与方法:
①让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想; ②学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.
(3)情感态度与价值观:
①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,
③通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.
三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)
1.能力分析
①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱。
2.认知分析
①学生已初步熟悉求曲线方程的基本步骤,②对曲线的方程的概念有一定的了解。
3.情感分析
学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
改变学生的学习方式是高中课改追求的基本理念。遵循以学生为主体,教师为主导,发展为主旨的现代教育原则。我采用了通过创设情境,充分调动学生已有的学习经验,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题;以学生主动探索、积极参与、共同交流与协作为主体,在教师的引导下,学生“跳一跳”就能摘得果实;于问题的分析和解决中实现知识的建构和发展。通过不断探究、发现,让学生的学习过程成为心灵愉悦的主动过程,使师生的生命力在课堂上得到充分的发挥。激发学生的学习兴趣和创新能力,帮助学生养成独立思考积极探索的习惯。
四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的'教学与活动策略)
椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我校学生基础差、底子薄,数学运算能力,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动 。在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习
五、教学重点及难点(说明本课题的重难点)
基于以上分析,我将本课的教学重点、难点确定为: ①重点:椭圆定义和标准方程 ②难点:椭圆的标准方程的推导。
六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)
一. 创设问题情境:
情境1:给出椭圆的一些实物图片:天体运行图(月亮绕地球,地球绕太阳旋转)、汽车油罐的横截面,立体几何中圆的直观图?
实物:圆柱形杯倾斜后杯中水的形状。
情境2:校园内一些椭圆形小花坛
问题 学校准备在一块长3米、宽1米的矩形空地上建造一个椭圆形花园,要尽可能多地利用这块空地,请问:如何画这个花园的边界线?
(学生现在还不能解决,只有通过今天这节课的学习才能解决这个问题)
这是实际生活中图形,数学中我们也遇到这一类图形:归结为到两定点距离之和为定值的点的轨迹问题。如何用现有的工具画出图形?(启发学生用画圆的方法试着画图)
教师与学生一起找出上述问题的解决方案,并一同用给的工具画出图形,与上述图形相似——椭圆
问题情境的创设应有利于激发学生的求知欲。为了学习椭圆的定义,我设计如下两个学生熟悉的情境:
通过情境1,让学生感受到椭圆的存在非常普遍。小到日常生活用品,大到建筑物的外形,天体的运行轨道。
通过情境2,让学生主动思考如何画椭圆及椭圆的定义。
通过问题,要求学生以小组为单位进行实验、观察、猜想,激发学生探索的欲望和浓厚的学习兴趣,使学生的主体地位得到体现。
二. 探求椭圆方程
如何选取坐标系?
方案1:以一个定点为原点,两定点的连线为X轴
回顾圆的方程的建立过程,首先是做什么? (提问学生) 如何选择适当的坐标系来建立椭圆的方程呢?
学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。
方案2:以两定点的连线为X轴,其垂直平分线为Y轴
学生可能有很多种建系方法,根据课堂的实际情况进行处理。不能否定学生的方法,让学生自己讨论那种建系方法更为合适,我想学生通过这些活动能够建立几种常见的坐标系,并列出相应的代数方程。我认为这样有利于培养学生的动手实验,分析比较,相互协作等能力。让学生体验到知识的产生过程。
三. 标准方程比较
(让学生讨论,归的标准方程有何异同) (1)相同点纳出这两种形式的标准方程有何异同)
(1)相同点
①方程中x,y表示椭圆上任意一点 ②关于x,y的二元二次方程;
③焦点位置的判定:焦点在较大分坐标;
(2)不同点
①方程形式 ②图形 ③焦点坐标
由于化简两个根式的方程的方法特殊,难度较大,估计学生容易想到直接平方,这时可让学生预测这样化简的难度,从而确定移项平方可以简化计算。为此,我首先启发学生如何去掉根号较好,让学生动手比较,最后得出移项平方化简方程比较简单,这样有利于培养学生的'分析比较能力。
七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)
椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力
八、板书设计(本节课的主板书)
一.定义
二. 标准方程比较
1)相同点 ①方程中x,y表示椭圆上任意一点的坐标; ②关于x,y的二元二次方程; ③焦点位置的判定:焦点在较大分母对应的变量的坐标轴上
2)不同点 ①方程形式 ②图形 ③焦点坐标
九.教学反思
椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。
椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。
一、概说
1.教材分析:
椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。
2.教学分析:
椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。
3.学生分析:
高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。
引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
我设定的教学重点是:椭圆定义的理解及标准方程的推导。
教学难点是:标准方程的推导。
二、目标说明:
根据数学教学大纲要求确立“三位一体”的教学目标。
1.知识与技能目标:
理解椭圆定义、掌握标准方程及其推导。
2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3.情感、态度和价值观目标:
(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
三、过程说明:
依据“一个为本,四个调整”的新的'教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:
(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。
(二)在教学过程中的体现:
1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。
2.新课呈现:
学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。
3.巩固应用
根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。
4.继续探究:
(1)观察椭圆形状,不同原因在哪里;
(2)改变绳长或变换焦点位置再画椭圆,发现关系;
(3)用几何画板交流画图,观察形状变化;
(4)如何描述形状变化?
引导学生探究欲望,开展研究性学习。
四、评价说明
本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。
(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。
(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。
(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。
五、说课总结
这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。
椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。
得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的'椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。
本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。
在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。
今日上了一节椭圆及其标准方程的课。同学们基本上按照之前的要求,带来了绳子,这绳子是用来画图用的,即是教学设计中提到的第一步,利用绳子和笔,几个人一起合作画图。内容倒是较为简单,但是大多数学生受到教材的影响,有的自己根本没有画或者是话的时候也不认真,就直接告诉我答案了。虽然说画出来的图形应该有两类,椭圆和线段,但是学生大部分直接说出了椭圆,因为本节内容是椭圆。
很多时候书上的内容是否需要用引子引出来的确是个问题,学生自己不可能不提前看书,而且看的内容还比较多。但是这些内容,学生有的似懂非懂,老师讲的时候感觉自己深切体会了,其实不然,自己还是不太清楚,只是因为教材那样写了,参考书有那些结论,学生跟着附和,当然也不排除真的懂得。但是滥竽充数的还是有的,甚至有些学生并没有参与到充数中去,而是默默的看着老师,希望老师多给点说明。
教材上的内容如果不提,学生又不可能完全预习过,正是因为如此参差不齐的预习程度,使得教师在上课的时候对于上课内容的把握增加了难度。有的很简单,却花了很多时间去说明,有的是难点,却轻轻带过了。对于这些问题,作为教师还是应当多分析一下学情,走近学生,了解他们的预习状况,同时自己对于教学内容的重点也应当多多思考,要从学生的角度思考问题。
虽然开始设计的让学生亲自动手操作画图,但是课堂中的实际情况确实事与愿违,学生不仅没有真正的认真参与,而且把画图的这点时间用来嬉笑了。虽然现在提倡学生参与的课堂,但是学生的动手能力不是从高中才应该培养的,而应该是从小开始就应该培养的,高中的一节课一个瞬间也许没有多少效果,或者说是在“浪费了”宝贵的课堂时间。因为学生和教师都没有合理运用这里的'实操时间,实际操作的效果没有真正达到。
我不反对课堂的学生动手操作,但是实际情况却很难展开,一来教材已经给了相应的操作结果,二来学生动手能力的确很欠缺,再加上学生自制力差,在操作过程中难免会出现说话聊天等与教学活动无关的事情。
学生在课堂上进行操作肯定是多多提倡的,这也是素质教育的体现,只不过我们应该把握好实际动手的时间,并不是没结果都要有大部分时间进行实操,因为数学课毕竟还是一门较为严谨的理论学科,年级越高,数学内容就越抽象。而且也需要每一位老师的一点付出,这样学生的操作能力锻炼的机会才不会在某个地方就没了。
同时实际操作的活动出现不太理想效果的原因还包括教师自身对课程的设计,没有把握好学生应当进行的活动的度,没有选好让学生参与的活动。同时既然选择了让学生自己动手,那就不要担心教学时间被活动耽误了,学生参与了,收获也许是无尽的,在以后的某一天学生还能想起来高中的某一次课上活动。
《椭圆及其标准方程》说课稿
我说课的题目是全日制普通高级中学教科书(试验修订本。必修)《数学》第二册、第八章《圆锥曲线》、第一节《椭圆及其标准方程》。
一、概说:
1、教材分析:
椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。
2、教学分析:
椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。
3、学生分析:
高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。
基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。
引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
我设定的教学重点是:椭圆定义的理解及标准方程的推导。
教学难点 是:标准方程的推导。
二、目标说明:
根据数学教学大纲要求确立“三位一体”的教学目标 。
1、知识与 技能目标:
理解椭圆定义、掌握标准方程及其推导。
2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。
3、情感、态度和价值观目标:
(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。
(2)进行数学美育的渗透,用哲学的观点指导学习。
三、过程说明:
依据“一个为本,四个调整”的新的教学理念和上述教学目标 设计教学过程 ,
“以学生发展为本,新型的师生关系、新型的教学目标 、新型的教学方式、新型的呈现方式”体现如下:
(一)对教材的重组与拓展:根据教学目标 ,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。
(二)在教学过程 中的体现:
1、新课导入 :以影音文件“海尔波谱彗星的运行轨道示意图”导入 ,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。
2、新课呈现:
学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的'逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。
3、巩固应用
根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。
4、继续探究:
(1)观察椭圆形状,不同原因在哪里;
(2)改变绳长或变换焦点位置再画椭圆,发现关系;
(3)用几何画板交流画图,观察形状变化;
(4)如何描述形状变化?
引导学生探究欲望,开展研究性学习。
四、评价说明:
本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。
(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的`精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。
(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。
(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。
五、说课总结:
这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。
教学目标
1.把握椭圆的定义,把握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,把握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步把握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习爱好和创新意识。
教学建议
教材分析
1. 知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式。难点是椭圆标准方程的建立和推导。关键是把握建立坐标系与根式化简的方法。
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程。椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先碰到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用。先讲椭圆也与第七章的圆的方程衔接自然。学好椭圆对于学生学好圆锥曲线是非常重要的。
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解。
另外要注重到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种非凡情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”。这样有利于集中精力进一步研究椭圆的标准方程和几何性质。但讲解椭圆的定义时注重不要忽略这两种非凡情况,以保证对椭圆定义的准确性。
(2)根据椭圆的定义求标准方程,应注重下面几点:
①曲线的方程依靠于坐标系,建立适当的坐标系,是求曲线方程首先应该注重的地方。应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的.方程形式整洁和简洁。
②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整洁、简洁,要让学生认真领会。
③在方程的推导过程中碰到了无理方程的化简,这既是我们今后在求轨迹方程时经常碰到的问题,又是学生的难点。要注重说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项。
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证实,”方程 的解为坐标的点都在椭圆上”。这实际上是方程的同解变形问题,难度较大,对同学们不作要求。
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:外形相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同。
椭圆的焦点在 轴上 标准方程中 项的分母较大;
椭圆的焦点在 轴上 标准方程中 项的分母较大。
另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法。例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,假如求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆。
教法建议
(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习爱好。
为激发学生学习圆锥曲线的爱好,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。
例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上。假如这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行。人类发射人造地球卫星或人造行星就要遵循这个原理。相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道。因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的。
(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历
为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的熟悉。
(3)对椭圆的定义的引入,要注重借助于直观、形象的模型或教具,让学生从感性熟悉入手,逐步上升到理性熟悉,形成正确的概念。
教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。
教师可事先预备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的.长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
教学目标:
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。
(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。
教学重点:椭圆的定义和椭圆的标准方程。
教学难点:椭圆标准方程的推导。
教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。
教具准备:多媒体课件和自制教具:绘图板、图钉、细绳。
教学过程:
(一)设置情景,引出课题
问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片。
(二)启发诱导,推陈出新
复习旧知识:圆的定义是什么?圆的标准方程是什么形式?
提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?
引出课题:椭圆及其标准方程
(三)小组合作,形成概念
动画演示椭圆形成过程。
提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?
下面请同学们在绘图板上作图,思考绘图板上提出的问题:
1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?
2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3.当绳长小于两图钉之间的距离时,还能画出图形吗?
学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:
椭圆
线段
不存在
并归纳出椭圆的定义:平面内与两个定点 、 的距离的和等于常数(大于 )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
(四)椭圆标准方程的推导:
1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简。
2.提问:如何建系,使求出的方程最简?
由各小组讨论,请小组代表汇报研讨结果。
各组分别选定一种方案:(以下过程按照第一种方案)
①建系:以 所在直线为x轴,以线段 的垂直平分线为y轴,建立直角坐标系。
②设点:设 是椭圆上任意一点,为了使 的坐标简单及化简过程不那么繁杂,设 ,则
设 与两定点 的距离的和等于
③列式: ∴
④化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)
一、教材分析
1、地位及作用
圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。
推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。
2、教学内容与教材处理
椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
3、教学目标
根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:
1、知识目标
①建立直角坐标系,根据椭圆的定义建立椭圆的'标准方程;
②能根据已知条件求椭圆的标准方程;
③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。
2、能力目标
①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力;
②培养学生的观察能力、归纳能力、探索发现能力;
③提高运用坐标法解决几何问题的能力及运算能力。
3、情感目标
①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶;
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨;
③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。
4、重点难点
基于以上分析,我将本课的教学重点、难点确定为:
①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法;
②难点:椭圆的标准方程的推导。
二、教法设计
在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。
三、学法设计
通过创设情境,充分调动学生已有的学习经验,让学生经历“观察――猜想――证明――应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
四、学情分析
1、能力分析
①学生已初步掌握用坐标法研究直线和圆的方程;
②对含有两个根式方程的化简能力薄弱。
2、认知分析
①学生已初步熟悉求曲线方程的基本步骤;
②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解;
③学生已经初步掌握研究直线和圆的基本方法。
3、情感分析
学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
五、教学程序
从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动,在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质。基于这一理论,我把这一节课的教学程序分成六个步骤来进行,下面我向各位作详细说明:
教学目标:
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。
(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。
教学重点:椭圆的定义和椭圆的标准方程。
教学难点:椭圆标准方程的推导。
教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。
教具准备:多媒体课件和自制教具:绘图板、图钉、细绳。
教学过程
(一)设置情景,引出课题:
1对椭圆的感性认识。通过演示课前老师和学生共同准备的有关椭圆的实物和图片,让学生从感性上认识椭圆。
2通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。
提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的'轨迹是椭圆?
下面请同学们在绘图板上作图,思考绘图板上提出的问题:
1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?
2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3当绳长小于两图钉之间的距离时,还能画出图形吗?
(二)研讨探究,推导方程
1知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?