您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

等差数列教案(14篇)

2023-06-30 14:05:22综合
  • 相关推荐

等差数列教案(14篇)

  【简介】在学习等差数列的过程中,我们需要一个合适的教案来引导我们,让我们能够更好地理解和掌握这一知识点。那么,如何编写一份完善的等差数列教案呢?让我们一起来探讨一下。本文是热心会员“b3472”分享的等差数列教案(共14篇),供大家阅读。

等差数列教案

等差数列教案 篇1

一、教材分析

1、教学目标:

  A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

  B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点

①等差数列的概念。

②等差数列的通项公式的。推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析

  采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

  1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是

  21,22,23,24,25,

  2、某剧场前10排的座位数分别是:

  38,40,42,44,46,48,50,52,54,56。

  3.某长跑运动员7天里每天的训练量(单位:)是:

  7500,8000,8500,9000,9500,。

共同特点:

  从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究

  1、给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③公差可以是正数、负数,也可以是0。

  2、推导等差数列的通项公式

  若等差数列{an }的首项是 ,公差是d, 则据其定义可得:

- =d 即: = +d

– =d 即: = +d = +2d

– =d 即: = +d = +3d

进而归纳出等差数列的通项公式:

= +(n-1)d

此时指出:

  这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

– =d

– =d

– =d

– =d

  将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d

  当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

  接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用

(三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  第二问实际上是求正整数解的问题,而关键是求出数列的通项公式

  例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

(四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 (由学生总结这节课的收获)

  1、等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2、等差数列的通项公式 = +(n-1) d会知三求一

(六) 布置作业

  必做题:课本P114 习题第2,6 题

  选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高中数学数列教案:等差数列 篇2

[教学目标]

  1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

  1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

  一。课题引入

  创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

  二、新课探究

(一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

  根据等差数列的定义可得:

  因此等差数列的通项公式就是:,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

  将以上-1个式子相加得等差数列的通项公式就是:,

  三、应用与探索

  例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

  例2、在等差数列中,已知=10,=31,求首项与公差d.

  解:由,得。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

  2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

  四、小结

  1、等差数列的通项公式:

  公差;

  2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3、判断一个数列是否为等差数列只需看是否为常数即可;

  4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

  五、作业:

  1、必做题:课本第40页习题第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3+???+100=

.1等差数列学案

等差数列教学设计 篇3

教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

教学重点

  1. 等差数列的概念;

  2. 等差数列的通项公式

教学难点

  等差数列“等差”特点的理解、把握和应用

教学方法

  启发式数学

教具准备

  投影片1张(内容见下面)

教学过程

(I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

  师:看这些数列有什么共同的特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列① (1≤n≤6); (2≤n≤6)

  对于数列② -2n(n≥1)

(n≥2)

  对于数列③

(n≥1)

(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:

  即:

  即:

……

  由此可得:

  师:看来,若已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项 。

  如数列① (1≤n≤6)

  数列②: (n≥1)

  数列③:

(n≥1)

  由上述关系还可得:

  即:

  则: =

  如:

  三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由

  n=20,得

(2)由

  得数列通项公式为:

  由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

  生:(口答)课本P118练习3

(书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即 (n≥2)

②等差数列通项公式 (n≥1)

  推导出公式:

(V)课后作业

  一、课本P118习题 1,2

  二、1.预习内容:课本P116例2—P117例4

  2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

  板书设计

  课题

  一、定义

  1.(n≥2)

  一、通项公式

  2.公式推导过程

  例题

  教学后记

高中数学等差数列教案 篇4

  2。2。1等差数列学案

一、预习问题:

  1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

  2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,

  即 或 。

  3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

  4、等差数列的通项公式: 。

  5、判断正误:

①1,2,3,4,5是等差数列; ( )

②1,1,2,3,4,5是等差数列; ( )

③数列6,4,2,0是公差为2的等差数列; ( )

④数列 是公差为 的等差数列; ( )

⑤数列 是等差数列; ( )

⑥若 ,则 成等差数列; ( )

⑦若 ,则数列 成等差数列; ( )

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )

⑨等差数列的公差是该数列中任何相邻两项的差。 ( )

  6、思考:如何证明一个数列是等差数列。

二、实战操作:

  例1、(1)求等差数列8,5,2,的第20项。

(2) 是不是等差数列 中的项?如果是,是第几项?

(3)已知数列 的公差 则

  例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

  例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

高中数学等差数列教案 篇5

[教学目标]

  1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解 等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

  1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

  一。课题引入

  创设情境 引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

  1682,1758,1834,1910,1986,( )

  你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

  它们共同的规律是?

  从第二项起,每一项与前一项的差等于同一个常数。

  我们把有这一特点的数列叫做等差数列。

  二、新课探究

(一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

  2、等差数列定义的数学表达式:

  试一试:它们是等差数列吗?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 数列{an},若an+1-an=3

  3、等差中顶定义

  在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:

(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

  如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。

(二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列 首项是 ,公差是 ,那么这个等差数列 如何表示? 呢?

  根据等差数列的定义可得:

, , ,…。

  所以: ,

……

  由此得 ,

  因此等差数列的通项公式就是: ,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

……

  将以上 -1个式子相加得等差数列的通项公式就是: ,

  三、应用与探索

  例1、(1) 求等差数列8,5,2,…,的第20项。

(2) 等差数列 -5,-9,-13,…,的第几项是 –401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得 成立,实质上是要求方程 的正整数解。

  例2、在等差数列中,已知 =10, =31,求首项 与公差d.

  解:由 ,得 。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1、 等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a =( )。

  A. 1 B. -1 C. -2 D. 22.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结

  1.等差数列的通项公式:

  公差 ;

  2、 等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3、 判断一个数列是否为等差数列只需看 是否为常数即可;

  4、 利用从特殊到一般的思维去发现数学系规律或解决数学问题。

  五、作业:

  1、必做题:课本第40页 习题 第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3++100=

  高斯说:“请同学们预习下一节:等差数列的前N项和。”

高一数学等差数列教案 篇6

一、教学内容分析

  本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

  教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

  1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法

  引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

  用多种方法对等差数列的通项公式进行推导。

  在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

  通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

  重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

  难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

  关键:

  等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

等比数列教案 篇7

一、概述

  教材内容:等比数列的概念和通项公式的推导及简单应用

  教材难点:灵活应用等比数列及通项公式解决一般问题

  教材重点:等比数列的概念和通项公式

二、教学目标分析

  1、 知识目标

  掌握等比数列的定义 理解等比数列的通项公式及其推导

  2.能力目标

(1)学会通过实例归纳概念

(2)通过学习等比数列的通项公式及其推导学会归纳假设

(3)提高数学建模的能力

  3、情感目标:

(1)充分感受数列是反映现实生活的模型

(2)体会数学是来源于现实生活并应用于现实生活

(3)数学是丰富多彩的而不是枯燥无味的

三、教学对象及学习需要分析

  1、 教学对象分析:

(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

(2)对归纳假设较弱,应加强这方面教学

  2、学习需要分析:

四。 教学策略选择与设计

  1、课前复习

(1)复习等差数列的概念及通向公式

(2)复习指数函数及其图像和性质

  2.情景导入

高中数学等差数列教案模板 篇8

  等差数列

  教学目的:

  1.明确等差数列的定义,掌握等差数列的通项公式;

  2.会解决知道an,a1,d,n中的三个,求另外一个的问题

  教学重点:等差数列的概念,等差数列的通项公式

  教学难点:等差数列的性质

  教学过程:

  引入:① 5,15,25,35,?和② 3000,2995,2990,2985,?

  请同学们仔细观察一下,看看以上两个数列有什么共同特征??

  共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等-----应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列

  二、讲解新课:

  1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{an},若an-an?1=d(与n无关的数或字母),n≥2,n∈N,则此数列是等差数列,d 为公?

  2.等差数列的通项公式:an?a1?(n?1)d【或an?am?(n?m)d】 ?an?的首项是a1,公差是d,则据其定义可得:a2?a1?d即:a2?a1?d

  a3?a2?d即:a3?a2?d?a1?2d

  a4?a3?d即:a4?a3?d?a1?3d

??

  由此归纳等差数列的通项公式可得:an?a1?(n?1)d

∴已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项a如数列①1,2,3,4,5,6; an?1?(n?1)?1?n(1≤n≤6)

  数列②10,8,6,4,2,?; an?10?(n?1)?(?2)?12?2n(n≥1)数列③1234;,;,1,?;an?1?(n?1)?1?n(n≥1)

  由上述关系还可得:am?a1?(m?1)d

  即:a1?am?(m?1)d

  则:an?a1?(n?1)d=am?(m?1)d?(n?1)d?am?(n?m)d

  即的第二通项公式an?am?(n?m)d∴ d=am?an

  m?n

  如:a5?a4?d?a3?2d?a2?3d?a1?4d

  三、例题讲解

  例1 ⑴求等差数列8,5,2?的第20项

⑵-401是不是等差数列-5,-9,-13?的项?如果是,是第几项?

  解:⑴由a1?8,d?5?8?2?5??3n=20,得a20?8?(20?1)?(?3)??49 ⑵由a1??5,d??9?(?5)??4得数列通项公式为:an??5?4(n?1)

  由题意可知,本题是要回答是否存在正整数n,使得?401??5?4(n?1)成立解之得n=100,即-401是这个数列的第100例2 在等差数列?an?中,已知a5?10,a12?31,求a1,d,a20,an

  解法一:∵a5?10,a12?31,则 ?a1?4d?10??a1??2∴an?a1?(n?1)d?3n?5

??

?d?3?a1?11d?31

  a20?a1?19d?55

  解法二:∵a12?a5?7d?31?10?7d?d?3

∴a20?a12?8d?55an?a12?(n?12)d?3n?小结:第二通项公式an?am?(n?m)d

  例3将一个等差数列的通项公式输入计算器数列un中,设数列的第s项和第t项分别为us和ut,计算us?ut

  s?t

  解:通过计算发现us?ut的值恒等于公差

  s?t

  证明:设等差数列{un}的首项为u1,末项为un,公差为d,?us?u1?(s?1)d

?

?ut?u1?(t?1)d⑴-⑵得us?ut?(s?t)d?

  us?ut

?d s?t

(1)(2)

  小结:①这就是第二通项公式的变形,②几何特征,直线的斜率

  例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各解:设?an?表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33,a12=110,n=12

∴a12?a1?(12?1)d,即10=33+11d解得:d?7因此,a2?33?7?40,a3?40?7?47,a4?54,a5?61,a6?68,a7?75,a8?82,a9?89,a10?96,a11?103,答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.例5 已知数列{an}的通项公式an?pn?q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

  分析:由等差数列的定义,要判定?an?是不是等差数列,只要看an?an?1(n≥2)是不是一个与n无关的常解:当n≥2时,(取数列?an?中的任意相邻两项an?1与an(n≥2))

  an?an?1?(pn?q)?[p(n?1)?q]?pn?q?(pn?p?q)?p为常数

∴{an}是等差数列,首项a1?p?q,公差为

  注:①若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,…

②若p≠0, 则{an}是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.③数列{an}为等差数列的充要条件是其通项an=p n+q(p、q是常数3通项公式

④判断数列是否是等差数列的方法是否满足

  3四、练习:

  1.(1)求等差数列3,7,11,??的第4项与第10项.解:根据题意可知:a1=3,d=7-3=4.

∴该数列的通项公式为:an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*)∴a4=4×4-1=15, a10=4×10-1=39.(2)求等差数列10,8,6,??的第20项.解:根据题意可知:a1=10,d=8-10=-2.∴该数列的通项公式为:an=10+(n-1)×(-2),即:an=-2n+12,∴a20=-2×20+12=-28.评述:要注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,??的项?如果是,是第几项?如果不是,说明理由.解:根据题意可得:a1=2,d=9-2=7.∴此数列通项公式为:an=2+(n-1)×7=7n-5.令7n-5=100,解得:n=15,∴100是这个数列的第15项.(4)-20是不是等差数列0,-31,-7,??的项?如果是,是第几项?如果不是,说明理由.解:

  由题意可知:a1=0,d=-31∴此数列的通项公式为:an=-7n+7,令-7n+7=-20,解得n=47

  2227

  因为-7n+7=-20没有正整数解,所以-20不是这个数列的项.2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9, a9=3,求?1.解:(1)由题意得:?a1?3d?10,解之得:???

?d?3?a1?6d?19(2)解法一:由题意可得:?a1?2d?9,解之得?a1?11

??

?d??1?a1?8d?3

∴该数列的通项公式为:an=11+(n-1)×(-1)=12-n,∴a12=0 解法二:由已知得:a9=a3+6d,即:3=9+6d,∴d=-1 又∵a12=a9+3d,∴a12=3+3×(-1)=0.Ⅳ.课时小结

  五、小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an?1=d ,(n≥2,n∈N).其次,要会推导等差数列的通项公式:an?a1?(n?1)d,并掌握其基本应用.最后,还要注意一重要关系式:an?am?(n?m)d和an=p n+q(p、q是常数)的理解与应用.?

等差数列教案 篇9

  设计思路

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法――通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

  教学过程:

  一、片头

(30秒以内)

  前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。

  30秒以内

  二、正文讲解(8分钟左右)

  第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒

  第二部分内容:给出等差数列的定义及其数学表达式50 秒

  第三部分内容:哪些数列是等差数列?并且求出首项与公差。根据这个练习总结出几个常用的结152秒

  三、结尾

(30秒以内)授课完毕,谢谢聆听!30秒以内

  自我教学反思

  本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。

数学等差数列教案 篇10

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1. 等差数列的概念;

  2. 等差数列的通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教学方法

  启发式数学

  教具准备

  投影片1张(内容见下面)

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的.特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  ③

  生:积极思考,找上述数列共同特点。

  对于数列① (1≤n≤6); (2≤n≤6)

  对于数列② -2n(n≥1)

  (n≥2)

  对于数列③

  (n≥1)

  (n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:

  即:

  即:

  ……

  由此可得:

  师:看来,若已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项 。

  如数列① (1≤n≤6)

  数列②: (n≥1)

  数列③:

  (n≥1)

  由上述关系还可得:

  即:

  则: =

  如:

  三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由

  n=20,得

  (2)由

  得数列通项公式为:

  由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即 (n≥2)

  ②等差数列通项公式 (n≥1)

  推导出公式:

  (V)课后作业

  一、课本P118习题 1,2

  二、1.预习内容:课本P116例2—P117例4

  2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

  板书设计

  课题

  一、定义

  1.(n≥2)

  一、通项公式

  2.公式推导过程

  例题

  教学后记

优秀高一数学等差数列教案 篇11

  一、等差数列

  1、定义

  注:“从第二项起”及

  “同一常数”用红色粉笔标注

  二、等差数列的通项公式

  (一)例题与练习

  通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二)新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件; f

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1、 9 ,8,7,6,5,4,……;√ d=—1

  2、 ,0。72,……;√ d=

  3、 0,0,0,0,0,0,……。; √ d=0

  4、 1,2,3,2,3,4,……;×

  5、 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,

  则据其定义可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  进而归纳出等差数列的通项公式:

  an=a1+(n—1)d

  此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)<t

  当n=1时,(1)也成立,

  所以对一切n∈N﹡,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n—1个等式。

  对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

  (2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)

  设置此题的目的:

  1、加强同学们对应用题的综合分析能力,

  2、通过数学实际问题引出等差数列问题,激发了学生的兴趣;

  3、再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结 (由学生总结这节课的收获)

  1、等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2、等差数列的通项公式 an= a1+(n—1) d会知三求一

  3、用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题第2,6 题

  选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

数学等差数列教案 篇12

  一、教学内容分析

  本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

  二、学生学习情况分析

  教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

  三、设计思想

  1.教法

  ⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

  ⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

  ⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法

  引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

  用多种方法对等差数列的通项公式进行推导。

  在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学目标

  通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

  五、教学重点与难点

  重点:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  难点:

  ①理解等差数列“等差”的特点及通项公式的含义。

  ②理解等差数列是一种函数模型。

  关键:

  等差数列概念的理解及由此得到的“性质”的方法。

  六、教学过程(略)

等差数列教学反思 篇13

  这一节课,成功的地方:

  1、合理置疑。在课前复习中,我巧妙地利用了学生花3 分钟还没有解答出来的一题目:求数列1 ,4 ,7 ,10 ,13 ,…… 的一个通项公式。设下悬念,学习了这节课内容之后,相信大家能在1 分钟之内就能求出它的通项公式。学生们的求知欲一下就被激发起来了,眼睛瞪得大在的,半信半疑,课堂上出现一种欲罢不能的愤愤不平状态。为这一节课开了一个好头。

  2、表扬在87 中的课堂更显神效。在学校领导介绍学校情况和周二听了高三、高二各一节课情况下,脑海里就思考着,87 中的学生基础较差,学困生学可能占一大半,我思考如何才能使我的课堂更高效呢?使自己的课受学生欢迎?能在宽松祥和的学习环境下,让学生掌握这节课的重点与突破难点内容呢?这时我想起了我们可亲可敬的王红教授提倡的亲文化。我整节都面带笑容,一但发现学生做得好的地方,哪怕一点点闪光点,我都马上给予肯定和表扬,学生学习积极性很高,课堂答题的正确率很高,就是做题的速度有点慢,或许是因为基础差的原因。不知不觉就到了下课,还看到学生有种依依不舍的感觉,太快就下课了。课后,我与学生交谈,他们都说这节课很简单,都能听明白,并且练习都会做,这是我意料之外的,倍感欣慰。各位培养对象的点评是“妈妈”型的老师在87 中应该很受欢迎的。

  3、信息技术走进课堂:充分利用多媒体手段,以轻松愉快的动画演示,化抽象为形象,创设了直观的课堂教学效果,化解了知识的难点。

  4、探究式教学走进课堂为学生的学习提供了多样化的活动方式,激发学生的兴趣,让学生积极参与。学生通过观察、猜想、推理等丰富多彩的活动达到了知识的主动构建与理解。

  有待改进的地方:

  1、课本的引例重视不够,在课件中虽然有显示,象放电影,太快!没有给予充足时间来让学生体会阅读,这一点应向“同课异构”增中何校学习,他在这方里花的时间刚刚好,能充分调动学生的积极性与学习的热情,让学生了解到原来数学来源实际生活,生活中处处有数学。

  2、对教材拓展得不够广,我只对教材的例题进行讲解,做了两道变式题,但是来自二中的邓老师,他能把等差数更一般化的通项公式也在引导出来,并且学生掌握得很好,能正确运用公式来解决问题。

  3、由于对学情还是了解不透彻,导致预设的内容,变式3 和等差中项的学习内容还没有来得学习就下课了,给下一节课教学的进度带来一定的影响。

高中数学等差数列教案 篇14

  一。设计思想

  数学是思维的体操,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。

  本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

  二。教材分析

  高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。

  本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

  三。学情分析

  学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。

  四。教学目标

  1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。

  2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

  3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。

  五。重点、难点

  教学重点:等差数列的概念及通项公式的推导。

  教学难点:对等差数列概念的理解及学会通项公式的推导及应用。

  六。教学策略和手段

  数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

  教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。

  七。课前准备

  学生预习,教师做好课件并安装好。

  八。教学过程

  创设情景,引入概念

  设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。

  师生活动:

  情景1:

  师—把班上学生学号从小到大排成一列 :

  学生:

  师—这是数列吗?你能归纳出它的通项公式吗?

  学生—是,

  师—把上面的数列各项依次记为 ,填空:

  学生—填空并归纳出一般规律: ,( )

  师—上面这个规律还有其他形式吗?

  学生—或者写成 ,( )

  注:要对强调 ,原因在于 有意义。

  师—你能用普通语言概括上面的规律吗?

  学生—自由发言,选择最恰当的语言。

  上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。

  情景2:看幻灯片上的实例

(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

  48,53,58,63

(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

  18,13,8,

(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

  本利和=本金 (1+利率 存期)

  时间 年初本金(元) 年末本利和(元) 第1年 第2年 第3年 第4年 第5年 例如,按活期存入元,年利率是%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

  各年末本利和(单位:元)

  师:上面的三个数列又分别有什么规律呢?

  学生—(1) , ,

(2) , ,

(3) , ,

  师—归纳上面数列的共同特征:

(d是常数), , ,

  师 —满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

  学生(共同)—等差数列。

  提出课题《等差数列》

  师—给出文字叙述的定义(学生叙述,板书定义):

  一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。

  对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。

  师—这样的数列在生活中的例子,谁能再举几个?

  学生—某剧场前8排的座位数分别是

  52,50,48,46,44,42,40,38.

  学生—全国统一鞋号中成年女鞋的各种尺码分别是

  21, ,22 , ,23 , ,24 , ,25

  抢答:观察下列数列是否为等差数列

  1,2,4,6,8,10,12,……

  0,1,2,3,4,5,6,……

  3,3,3,3,3,3,3……

  2,4,7,11,16,……

-8,-6,-4,0,2,4,……

  3,0,-3,-6,-9,……

  注:常数列也是等差数列,公差是0。

  推进概念,发现性质

  设计意图:概括等差中项的概念。总结等差中项公式,用于发现等差数列的性质。

  师生活动:

  师—想一想,一个等差数列最少有几项?它们之间有什么关系?

  学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。

  设三个数 成等差数列,则A叫a与b的等差中项。同时有A-a=b-A,

  说明:(1)上面式子反过来也成立。

(2)等差数列中的任意连续三项都构成等差数列 ,反之亦成立。

(三)探究通项公式

  设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。

  师生活动:

  师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。

  先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。

  师—若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?

  启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。

  学生— 即:

  即:

  即:

  由此可得:

  师—从第几项开始归纳的?

  学生—第二项,所以n≥2。

  师—n=1时呢?

  学生—当n=1时,等式也是成立,因而等差数列的通项公式

( )

  师—很好!

相关热搜