您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 心得体会 > 正文

人工智能心得体会13篇

2024-03-12 20:50:49心得体会

人工智能心得体会13篇

人工智能心得体会 篇1

  人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

  1、人工智能学科的诞生

  12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

  以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

  现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

  2、逻辑学的发展

  逻辑学的大体分类

  逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹()提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

  泛逻辑的基本原理

  当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

  泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

  3、逻辑学在人工智能学科的研究方面的应用

  逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

  经典逻辑的应用

  人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

  非经典逻辑的应用

  (1)不确定性的推理研究

  人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

  归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

  (2)不完全信息的推理研究

  常识推理是一种非单调逻辑,即人们基于不完全的`信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

  此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

  4、人工智能——当代逻辑发展的动力

  现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

  5、结语

  人工智能的产生与发展和逻辑学的发展密不可分。

  一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会 篇2

  人工智能对教育的影响表现为改变育人目标、校园环境、教师角色、学习范式。

  一、人工智能改变了育人目标。

  1、当人工智能成为人的记忆外存和思维助手时,学生简单地摄取和掌握知识以获取挣钱谋生技能的育人目标将不再重要。教育应更加侧重培养学生的爱心、同理心、批判性思维、创造力、协作力,帮助学生在新的社会就业体系和人生价值坐标系中准确定位自己。

  2、教育目标、教育理念的改变,将加速推动培养模式、教材内容、教学方法、评价体系、教育治理乃至整个教育体系的改革创新。

  二、人工智能改变了校园环境。

  1、未来,校园环境信息化将向更高层次的智慧校园迈进,各种智能感知设备和技术无处不在。校长、教师、学生不知不觉已经镶嵌到有形的校园物理空间和无形的虚拟数据空间中。当学生踏进校园就可以完成签到,离开校园自动告知家人,进入教室多媒体设备已经开启……

  2、校园物理环境、教室教学环境、网络学习环境已经充分融合,实现了从环境的数据化到数据的环境化、从教学的数据化到数据的教学化、从人格的数据化到数据的人格化转变。校园看上去还是那个校园,却充满了人类的温度和智慧。

  三、人工智能也改变了教师角色。

  1、有专家指出,创意工作者、人际连接者和复杂模式的判断者这三类人是最不可能被人工智能替代的。教师这一职业同时满足这三类人的特点,因为教师必须适应变化的教学政策和教学环境,面向不同性格特点和需求的学生,处理多样化的教育教学问题。

  2、人工智能并不能轻易取代教师这个职业。但在未来,人工智能可以改变教师的角色和作用。教师可以从低附加值的简单重复工作中自我解放,从而更加专注于构建和谐稳固的师生关系和促进学生全面长远发展。

  四、人工智能对学习范式进行了巨大改变。

  1、随着认知科学、脑科学和学习科学的快速发展,人机协同增强智能、群体集成智能成为人工智能发展的新方向。人工智能能从知识关联和群体分层方面分析学生知识掌握情况、推送学习建议,能为每个学生提供个性化、定制化的学习内容、方法,激发学生深层次的学习欲望

  2、如今未来已来,对于人工智能教育不仅要在姿态方面迎接未来、在态度层面正视未来、在认知层面读懂未来,更要抓住机遇,直面挑战,在管理决策、教人育人等实践层面积极构建属于自己的美好未来。

人工智能心得体会 篇3

  今天是我研究人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

  人工智能在很多领域得到了发展,在我们的日常生活和研究中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

  通过这堂课,我明白了野生智能开展的汗青和所处的位置,它始终处于计算机开展的最前沿。我相信野生智能在不久的将来将会得到更深一步的实现,会创造出一个全新的野生智能世界。

人工智能心得体会 篇4

  人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

  1、人工智能学科的诞生

  12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

  以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

  现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

  2、逻辑学的发展

  逻辑学的大体分类

  逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

  泛逻辑的基本原理

  当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

  泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

  3、逻辑学在人工智能学科的研究方面的应用

  逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

  经典逻辑的应用

  人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

  非经典逻辑的应用

  (1)不确定性的推理研究

  人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

  归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

  (2)不完全信息的推理研究

  常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

  此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

  4、人工智能——当代逻辑发展的动力

  现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

  5、结语

  人工智能的产生与发展和逻辑学的发展密不可分。

  一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会 篇5

  人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

  人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

  在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

  这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会 篇6

  人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。

  人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

  人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

  纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

  由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会 篇7

  一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

  1、促进教育方式的变革,培养学生的综合能力

  在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

  2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

  3、培养学生的团队协作能力

  机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

  4、扩大知识面,转换思维方式

  在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

  二、中小学机器人教学活动的几点做法:

  考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

  1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

  2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

  3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

  教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会 篇8

  人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

  人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

  纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

  由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会 篇9

  人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

  人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

  在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的.原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

  这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会 篇10

  20xx年11月17日

  今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

  一、激趣导入,引入新知

  学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

  二、积极探索,形象直观

  学生们利用之前所学程序可以计算出简单的`价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

  三、小组合作,积极探究

  本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

  希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会 篇11

  今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

  一、激趣导入,引入新知

  学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

  二、积极探索,形象直观

  学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

  三、小组合作,积极探究

  本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

  希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会 篇12

  人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

  1、人工智能学科的诞生

  12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

  以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

  现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

  2、逻辑学的发展

  逻辑学的大体分类

  逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹()提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

  泛逻辑的基本原理

  当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

  泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

  3、逻辑学在人工智能学科的研究方面的应用

  逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

  经典逻辑的应用

  人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

  非经典逻辑的应用

  (1)不确定性的推理研究

  人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

  归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

  (2)不完全信息的推理研究

  常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

  此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

  4、人工智能——当代逻辑发展的动力

  现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的`智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

  5、结语

  人工智能的产生与发展和逻辑学的发展密不可分。

  一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会 篇13

  就在上个月,一场世纪之战拉开序幕。李世石九段与人工智能系统“阿尔法狗”展开围棋之战。虽然李世石凭神之一手在第四局中获得唯一而宝贵的胜利,却仍然以1:4的比分败给人工智能。

  由此无数人开始感到慌张。就在几年前,人们还普遍认为人工智能无法学会围棋这一最复杂的游戏,如今却只能接受这一事实。不仅如此,“阿尔法狗”甚至能够在棋局中进行自主学习,按照如此快的发展速度继续下去,难道人工智能真的会好像科幻片中那样毁灭人类,称霸地球?不仅普通民众如此想,霍金也深表堪忧,他说:“人工智能的发明是人类历史上最伟大的一个事件,不幸的是,它可能成为人类历史上最后一个事件。”

  然而并不是所有人都这么认为,有些人说虽然李世石败了,但是棋坛第一人柯洁还在坚守阵地呢,殊不知此言不过是自欺欺人罢了。

  我不持上述观点,也不盲目乐观或悲观,我只是简单地认为机器无法拥有和人类一样的情感。人类下棋是为了养神或者娱乐,而人工智能则是仅仅执行命令而已。它们能赢,却不知道快乐;它们会下棋,却不知道为什么要下棋。听闻人工智能在围棋上胜出后,下一个目标便要转向电竞,我嗤之以鼻。人工智能终究难以和人类一样思考。我在阅读此热点时看到一句话,恰好可以形容我现在的态度,却又指出令人堪忧的一点,它说:现在人工智能赢了,但只是赢而已,等到哪天它开始故意让我们赢的时候,那才是真正的危险。

  为此有人提出,人类的思维实际上是由神经冲动传达不同的阴阳离子形成的.,而人工智能执行命令则是靠“1、0”代码完成的,二者本就有相同之处,使人工智能好像人类一样思考、拥有感情并非不可能。因此应更加注重防范人工智能。

  然而我想,处在这个快速发展的时代,不仅是人工智能在以不可思议的速度进步,人类的其他科技都在以类似的速度发展着。若在某天人工智能真的达到了如此恐怖的水平,相比人类也已创造出很多对应的方法。毕竟我们都知道这样一个故事:一个农夫将一只小老虎养大,关系亲密,却没忘记随身准备一把用来支付它的枪。