您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 教学 > 正文

《圆柱的体积》教学反思12篇

2024-05-28 09:44:21教学

《圆柱的体积》教学反思12篇

  下面是范文网小编分享的《圆柱的体积》教学反思12篇,供大家参考。

《圆柱的体积》教学反思12篇

《圆柱的体积》教学反思1

  一、让操作更详实,留下思考的痕迹

  动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。留下自己思考的痕迹,为进一步探索知识做好准备。

  二、让观察更细致,寻找知识的联系

  数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。通过学生直观的'观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。

  三、让探索更深入,渴求方法的掌握

  如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时

《圆柱的体积》教学反思2

  由于我课前认真研读教材,把握教学的重点和难点,精心设制教学过程和教学活动,上课时我做到胸有成竹。通过这节课的教学我感到自身的教学水平和驾驭课堂的能力得到了提升,从同事评课反映,我认为这节课的教学是比较成功的。这节课教学方法主要体现在我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。

  一、交流预习作业。

  在预习作业里我在备课时就设制了两个知识点,让学生课前完成,一个知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,另一个知识点是要求学生预习教材回答两个问题,两个问题是与这节课教学密切相关的内容,在教材上都是能找到答案的。在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。

  二、交流猜想和探索如何验证。

  我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份 ,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的.思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。

  三、课件展示、构建新知。

  让学生观看课件:课件2是把刚才实际操作的过程再次演示和呈现,课件3和课件4是把圆柱的底面平均分成32份、64份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。为了拓展学生的知识面,我此时还提出了转化后的长方体底面的长和宽分别与圆柱体的底面周长和半径有什么关系,这在教材和参考教案都没有的知识点。学生的思维得到激发,学生勇于回答,学生回答错了,我既没有批评学生,也没有急不可耐给出答案,而是让学生再想,后来还是有学生能正确回答出来了。我想如果不给学生思考的时机直接给出答案,这样与学生发现问题的答案所产生的效果就截然不同了。

  推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。

  四、分层练习,发散思维。

  在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了三道练习题。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。在练习时我不断巡视关注学生练习情况,对出现的错误解答方法我不回避,在展示学生练习时既展示成功的也展示错误的。学生练习出现错误是正常现象,在讨论和评讲练习时是很好的资源,要充分的利用。

  不足之处:

  整个课堂教学过程中,师生的有效、良性互动还达不到预期目标,有一部分学生没有具备良好作业习惯,灵活运用知识解决问题的能力还欠缺。

  通过这节课,我思量交流预习作业能不能与全课的教学活动整合在一起,在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。建构高效的课堂教学范式在我校已经试验一个月了,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。

《圆柱的体积》教学反思3

  《圆柱的体积》一课是在学生已经学习了《圆的面积》计算和《长方体的体积》及《圆柱的表面积》等相关的知识的基础上教学的。同时又为学生今后进一步学习其他立体图形的有关知识做好充分准备的一堂课。结合本课的教学实际情况,谈几点反思:

  一、利用多媒体创设情境,促进了学生思维发展。

  传统教学只关注教给学生多少知识,教师把学生当成知识的“容器”。在这种被迫无奈的条件下,学生的学习只是被动的接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里我利用多媒体创设了丰富的教学情境,上课开始提出“如果我们要想知道这块橡皮泥的体积或这个圆柱体里水的体积,该怎么办?”学生提出“把橡皮泥捏成长方体的形状,把圆柱里的水再倒入一个长方体的盒子里,就可以求出来水的体积了”。这样不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,引导学生经历圆柱体积的推导过程,并适时用多媒体进行动态演示,学生在兴趣盎然中经历了自主探索、独立思考、分析整理、合作交流等过程,发现了数学问题的存在,经历了知识产生的过程,理解和掌握了一定的数学思想和方法,获得了数学活动经验,掌握了数学基本知识。在练习的环节我用多媒体提出计算鸡蛋体积的思维练习,调动的学生的兴趣,从而促进了学生的思维发展

  二、学生通过探究活动,经历了基本科学方法和过程。

  “强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神。”这是课改的明确要求。这里学生亲身经历提出问题、分析判断、动手实践、观察记录、收集整理、得出结论的过程,就是科学研究的过程,在这其中学生获得了直接的实践经验,尝试、经历了基本科学方法和过程。数学课堂教学中应将教师的验证性操作变成学生的探究性上活动,使学生在探究性活动中掌握知识,发展能力。

  三、体验了丰富的学习人生。

  创设了丰富的情境和氛围让学生去经历、体验、领悟,在知识发生、发展的过程中,学生的学习兴趣、热情、动机、学习态度和责任,搜集信息和处理信息的'能力,合作交流能力以及对个人价值、人类价值、科学价值等的认识都得到了发展。同时学生精神世界的发展从数学学习中获得了多方面的滋养,在对数学知识的认识、感受、体验、改变、创造的过程中,不断丰富和完善了自己的生命世界,体验了丰富的学习人生,满足了生命的成长需要。

  此外,本课也存在不足之处:如有的后进生参与活动的意识不强,还有待在以后教学中改进和提高。

《圆柱的体积》教学反思4

  本节课的教学内容是九年义务教育六年制小学数学第十二册﹙西师版﹚《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积高,用字母表示公式:V=Sh,让学生套用公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是活的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案不是老师告诉的,而是学生在自己艰苦的学习中发现并从学生的口里说出来的。这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的`容器。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

《圆柱的体积》教学反思5

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的`体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

《圆柱的体积》教学反思6

  对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。

  对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“V=Sh”而不是“V=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,V=Sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的S罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的关系”,还不如只观察两者的底面积S。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的`缘故。

  对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。

《圆柱的体积》教学反思7

  “圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。

  课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

  展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。

  练习安排注重密切联系生活实际,让学生运用自己刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的。

  教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的'思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。

《圆柱的体积》教学反思8

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  一、让学生在现实情境中体验和理解数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的.主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?采用小组讨论交流的形式。有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方

  体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。

  三、建立切拼表象,渗透极限思想

  学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,很遗憾。

《圆柱的体积》教学反思9

  学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的`图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。

  非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.

《圆柱的体积》教学反思10

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。从本节课教学目标的达成来看,较好地体现了以下几方面:

  一、注重知识之间的`内在联系。

  圆柱的体积的导入,先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的,并让学生建立起更深层的空间几何概念。

  二、引导学生经历知识探究的全过程。

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把柱转化成长方体。那么怎样来切割呢?此时利用生活中的“萝卜”引导学生思考。同学们有了圆面积计算公式推导的经验,经过思考得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。并利用多媒体动画演示,重现推导过程加深学生印象。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程中,认识得以升华(较抽象的认识——公式)。

  三、注重学法指导和数学思想方法的渗透。

  “学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

  本课中还存在很多不足在例如探究过程中没有充分的给予学生说一说、指一指的时间,在引导学生思考已知圆柱底面半径(r)和高(h)、已知圆柱底面直径(d)和高(h)、已知圆柱底面周长(c)和高(h)三种情况时,教师引导过多,应给予学生更充分的思考空间,让其考虑如果没有底面积,知道哪个条件也可以求圆柱体积。最后,在练习中缺少反馈,学生做完练习后,应及时做到直观反馈,总结优缺点,指导学生做题。

《圆柱的体积》教学反思11

  本节课是在学生已经学习了圆柱的体积计算公式的基础上开展的,大多数学庭作业已经能够熟练运用体积公式计算直观圆柱形容器的容积,这对本节课的后续计算莫定了良好基础。但是对生通过上节课的课堂练习以及家于例7中非直观圆柱形容器的容积计算,很多同学一开始无处着手。通过课件将瓶子正置及倒置的情况分开讨论,然后逐步引导,从而最终使学生明白该瓶子的容积在数值上就相当于两个小圆柱的体积。紧接着,两个及时的模仿练习再次让大家感受到解决此类问题的关键就在于“转换”和“构建”,即:将无法直接计算体积的物体转换成可计算体积的物体的.体积;又或者将原不规则的物体换个角度或方向,从而便于我构建新的可计算体积的物体,进而得出解题思路和问题答案。

  对于“转化”这种数学思想的培养,在教学过程中多进行一些引导性提问,给于学生足够的思考讨论时间,尽量让学生自己分析出思路,享受到成功的快乐,从而增强学生的自信心,提高学习兴趣。

《圆柱的体积》教学反思12

  这节课我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。

  首先,复习内容简单明了,以旧引新。复习的知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。

  其次,引导学生大胆交流猜想和探索验证。我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。

  再次,课件展示、构建新知。让学生观看课件:是把圆柱的底面平均分成32份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。

  最后,分层练习,发散思维。在获得圆柱的`体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了练习题是有层次和梯度的。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。解决生活中的问题中,我设计的习题激发学生思考的欲望,压路机、铅笔、柱子这些圆柱体,需要实际测量什么,才能进一步求得圆柱的体积,孩子们大胆思考,结合生活实际找到了答案,体会到“生活中的数学”。在练习时我不断巡视关注学生练习情况,鼓励学生大胆展示,交流各自的想法和做法。对出现的错误作为教师指导的课程资源,强化孩子对圆柱体积知识点的深化和理解。