您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 教学 > 正文

一元一次方程教学反思12篇

2024-03-19 20:45:59教学

一元一次方程教学反思12篇

一元一次方程教学反思 篇1

  一元一次方程是学习其他方程的基础,一元一次方程的解法是重点,一元一次方程的应用既是重点也是难点,因此在复习阶段,这一章的内容也显得尤为重要,下面结合教学中的实际情况谈一下复习一元一次方程的.过程中出现的错误:

  在复习一元一次方程的解法时,也强调了步骤——去分母、去括号、移项、合并同类项、系数化为1,但在去括号时学生往往只注重强调符号而忽略了去括号时要应用分配律都要乘以括号里的每一项,如解方程3(2x-4)-7(x-6)=12有各别学生错做成6x-4-7x+6=12。

  一元一次方程与有理数加减或整式加减类比较少,很多学生在有理数加减乘除混合运算时经常去分母或在解方程时了出现“原式=”这样的错误。

  如:当分母中含有小数时应先整理方程然后再去分母解方程,如:学生在整理时经常把-1也扩大倍数这一点与去分母混淆,应向学生指明,整理方程这一步是利用分数的基本性质将公式的分子与分母扩大相同的倍数结果不变,而去分母是利用等式的性质。

  以上是对复习一元一次方程这一章的教学反思,在日后的工作要经常反思、多做反思、及时找出问题,克服在工作中的错误和不足。

一元一次方程教学反思 篇2

  通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:

(1)解方程中的“去分母”。

(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。

  由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程

  怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。

  在解方程中去分母时,我们发现存在这样的一些问题:

(1)部分学生不会找各分母的最小公倍数,这点要适当指导。

(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。

(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x—x+2=2,其中x+2没有加括号,弄错了符号。

一元一次方程教学反思 篇3

  在学生学习了解一元一次方程一般都采用的五步变形方法以后,这节课重点探讨解下列方程的技巧方法,如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:

  30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。

  又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:

①把小数的分母化为整数的分母。如把方程中的前二项都分别分子分母同乘以10,则二项的分母分别成为5和1,即原方程变形为

②想办法将分母变为1,即把左边第一项分子、分母都乘以2,右边第一项分子、分母都乘

  10,则三项的分母都为1。原方程变形为2()=10()+2

  又如在解方程中,是先去括号呢,还是先去分母,怎样计算会简便些呢?

  只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方

  法。解一元一次方程一般都采用五步变形灵活应用,除此之外,据不同题型,运用一些技巧方法,就能快捷地求出其解。

一元一次方程教学反思 篇4

  人教版七年级上册P93—94的《解一元一次方程——去括号》这一节课的内容是继续讨论如何列、解方程的问题,它包括两方面:①根据实际问题列方程,②重点讨论解方程中的“去括号”。它先从一个实际问题出发,引导学生用方程的思想去通过建立模型列方程解决问题。在解方程中遇到了有括号的新形式,从而引发思考,当方程中有括号时,如何变形使方程最终简化为x=a的形式。其重点在于用去括号等步骤化简方程使之最终转化为x=a和在解决实际问题时,弄清题目的已知量、未知量,找出相等关系列方程。难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。

  活动1:复习回顾。

(1)一元一次方程的解法我们学了哪几步?每步要注意什么?

(2)练习:解方程9—3x=—5x+5此活动的目的温故旧知,为获取新知作铺垫。活动中我先用媒体展示回顾中的(1),学生回忆思考,然后回答。再展示练习(2),学生口述解此方程的步骤和过程,通过设问点明每一步的依据及注意事项。学生在此活动中积极思考,积极参与。但集体回答较多,我没能够充分深入全面了解学生原有知识水平及思维能力和分析解决问题能力了解学生的原有知识层次。是

  反思:此题作为具有新承上接下的作用,也是教师的好契机。应该先让学生自主解答,然后请一两位同学板演或主讲,师生共同

  评价,这样教师可及时深入了解学情,了解学生对用移项、合并同类项、系数化为1解一元一次方程的掌握情况和熟练成度等。

  活动2:列一元一次方程来解实际问题。

  问题:某校去年加强节能措施,提倡节约用电,去年下半年与上半年相比,月平均用电量减少1000度,全年用电9万度,该校去年上半年每月平均用电多少度?

  过程:师通过提问助学生分析,列出方程:若设上半年每月平均用电x度,则下半年每月平均用电(x-1000)度,上半年共用电6x度,下半年共用电6(x—1000)度。本题的一个等量关系是:上半年用电量+下关年用电量=,所以,可列方程6x+6(x—1000)=。

  反思:“找相等关系”是本节学生认知上的一个难点,教师没能很好分散及突破。这块内容教师过于承办,得出结论有些急促,学生对题意的理解和方程的来源与各个量的意义并非人人皆透、个个都明。因为应用题能否顺利解决和学生的阅读理解能力、生活经历、社会阅历有很大关系,所以应先组织学生齐读或请一同学朗读,让学生在读书中理解题意,弄清问题中的已知量和未知量,同时可感受数学就在身边的生活中,增强其爱数学的情感。然后放手让学生自己讨论交流,最后找出等量关系列出方程,接着再解一元一次方程并作答,教师只需加以强调解题的规范性和过程的注意事项。待学生解答完后让一两个学生进行讲解:从何理解题意、怎么分析、怎样解答,教师与其余学生共同评价主讲学生的思路,在学生暴露思维的过程中发展学生的思维品质。这样教师既能更进一步了解学

  生,又能让师生、生生交流更充分,更能体现出把课堂还给学生,以学生为主体,教师为主导的新课程理念。

  活动3:解方程

  背景:在分析实际问题的题意,找到等量关系列出方程6x+6(x—1000)=之后学生能想到用去括号把方程化简得

  6x+6x—6000=。

  过程:

  师:接下来如何变形?生1:合并同类项生2:移项

  师按生2步骤板演。生1:(困惑)

  反思:此处生1带着困惑被拽入生2的思维行列,教师忽略了生1的想法,也许会厄杀了生1思维的积极性。教师应尊重生1,可让生

  1、生2按自己的思路解题。

  生1方法:合并同类项,得

  12x—6000=移项,得

  12x=+6000合并同类项,得

  12x=系数化为1,得

  x=8000生2方法:移项,得

  6x+6x=+6000合并同类项,得

  12x=系数化为1,得

  x=8000完后组织学生进行观察、比较,学生自会发现生1过程中出现两次合并同类项。生2解法简捷省时少力,较生1解法有优越性,从而增强了择优意识,加强了算法程序化的思想。

  活动4:巩固新知:解下列方程

一元一次方程教学反思 篇5

  方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

  本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

  总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

  另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

一元一次方程教学反思 篇6

  上完《劝学》课堂后,深刻反思,通过教学虽然在识字教学和阅读教学中完成了教学任务,但是对本节课的教学,回忆起来感到有许多不足的地方,现做一下总结反思,以便在今后的教学中加以克服。

  教学本节课在备课方面下了一定的功夫,对人物的介绍,详细准确。在引入课题时设计的三种方法,最后采用激趣导入法。同时本节课能注意让学生积累好的词句。例如:教学指导讲解诗意之后,鼓励学生珍惜时间,努力学习,出示了格言警句。(莫等闲,白了少年头,空悲切。少壮不努力,老大徒伤悲。盛所不再来,一日难再晨。及时当勉砺,岁月不待人。)

  古文教学还要让学生学以致用。学生不愿意学习古文的原因除了需要识记的知识太多不易掌握之外,更重要的原因在于许多学生认为古文与时代距离太远,于实际生活无用。在这个问题上,我想到的就是如何让学生觉得古文有用。首先我设计了一个翻译的环节,把《劝学》中课文没有选取的一段短小精悍寓意深刻的文字给学生展示出来并要求他们翻译。这样做的目的在于第一让学生更全面的了解《劝学》及荀子的个人思想;第二在于让学生在翻译的过程中把刚刚学到的知识立即应用到学习中去,希望他们能感受到收获新知的喜悦与满足。我设计的下一个环节是学习荀子的论辩语言和思维。《劝学》是荀子论辩才华的一次集中展现,这种能力恰恰也是学生在平时写作及生活中需要掌握的一种能力。在介绍完荀子论辩文的基本特点后,我给学生提出了一个命题“人性本善还是本恶”。提出这个命题的原因在于第一“人性本恶”是荀子的人性论的思想中心,这个中心恰恰与儒家的另一位代表人物孟子的“人性本善论”相左。我希望通过这个命题加深学生对儒家两大代表人物“人性论”的理解;第二个原因在于这个命题曾经是国际大专辩论会的决赛辩题,我可以通过展示当时辩论会上的精彩辩词让学生对比出自己需要提高、改进的逻辑和语言。

  但是发现存在着许多不足,例如,课堂讲的多,对诗意理解讲得过细,耽误了时间。指导朗读,练习朗读时间也多,对于低年级的学生以识字教学为主,造成时间紧张,指导写字时时间太短。

  分析原因感觉在指导学习方法,课前预习,查阅资料方面还要加强指导,培养学生利用好的方法,有利于教学任务的按时完成。

  为此,今后我要在培养学生学习方法和学习能力上下功夫,循序渐进,耐心指导培养,保证教学任务的胜利完成。

一元一次方程教学反思 篇7

  一元一次方程的应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,尤其是环形追及问题,一直以来是我们数学教师不断研究和探讨的问题。

  反思本节课的教学,有以下几处优点:

  1、本节课研究的是行程问题,是学生最难解决的一类应用题,教材上只安排了一道例题(环形跑道中的追及问题),我根据教学的需要对教材进行了适当的加工和处理,搭了一些台阶,增加了几道例题,由直线上的相遇问题、追及问题,到环形跑道上的相遇问题、追及问题,由浅入深,层层递进。

  2、分析寻找行程问题中的等量关系是本节课的难点,为此在教学过程中我设计了两种不同的分析方法,一种是画图分析,另一种是列表分析,这样可以帮助学生寻找等量关系,从而列出方程,学生在这样的思路的引导下,逐渐掌握解决行程问题的方法。

  3、运用多媒体教学,让问题情景再现,充分的调动了学生们的学习积极性。给教学的进一步开展奠定了基础。

  4、让学生自己设计追及问题,分组讨论解决方案。

  在教学过程中学生曾为环形追及问题进行了激烈的讨论,我此时记忆犹新,我引导学生把问题分成几类:

  1、同时同地同向追及慢者在前(快追慢)

  解决方法:快者路程—慢者路程=一圈路程;

  2、同时异地同向追及慢者在前(快追慢)

  解决方法:快者路程—慢者路程=两者相距路程(较短);

  3、同时异地同向追及快者在前(慢追快)

  解决方法:快者路程—慢者路程=一圈路程—两者相距路程(较长)

  在解决第三种问题时,我们还总结了一句话帮助记忆:要想快追慢,路程换一换。更有优秀学生提出用相对速度来解决追及问题,在他回答后我给予肯定和表扬。

  反思本节课的教学,有些地方需要改进:

  1、课题气氛太活跃了,感觉有点控制不住,最气人的有两位学生因为争执竟然当堂吵价。看来制造活跃的学习氛围很重要,控制活跃的程度也是我以后要注意的问题,为自己定个目标:争取做到收放自如。

  2、由于讨论占用了很多时间,对练习有点浅尝辄止的味道,故时间的安排也是要注意的问题,不然会影响了下一学科的教学。

  希望我的学生和我自己,在课程改革的过程中,也能化被动为主动,不断地提出问题,研究问题,解决问题,一路思索,一路前进!

一元一次方程教学反思 篇8

  学习目标

  1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

  2. 会用一元一次方程解决工程问题

  重点难点

  重点:建立一 元一次方程解决 实际问题

  难点:探究实际问题与一元一次方程的关系

  教学流程

  师生活动 时间

  复备标注

  一、 复习:

  解下列方程:

  =5y+5

  2.

  二、新授

  例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

  分析:这里可以把总工作量看做1。思考

  人均效率(一个人做1小时完成的工作量)为 。

  由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

  这项工作分两 段完成,两段完成的工作量之和为 。

  解:设先安排x人工作4小时。

  根据两段工作量之和应是总工作量,得

  .

  去分母, 得 4x+8(x+2)=-1701

  去括号,得 4x+8x+16=40

  移项及合并同类项,得

  12x=24

  系数化为1,得 X=-243.

  所以 -3x=729

  9x=-2187.

  答:这三个数是-243,729,-2187。

  师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

  例4 根据下面的两种移动电话计费方式表,考虑下列问题。

  方式一 方 式二

  月租费 30元/月 0

  本地通话费 元/月 元/分

  (1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

  (2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

  解:(1)

  方式一 方式二

  200分 90元 80元

  350分 135元 140元

  ( 2)设累计通话t分,则按方式一要收费(30+)元,按方式二要收费元。如果两种计费方式的收费一样,则

  =30+

  移项,得 0. 4t - =30

  合并同类项,得 =30

  系数化为1,得 t=300

  由上可知,如果一个月内通话300分,那么两种计费方式相同。

  思考:你知道怎样选择计费方式更省钱吗?

  解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

  归纳:用一元一次方程分析和解决实际问题的基本过程如下

  三、巩固练习:94页9、10

  四、达标测试 :《名校》55页

  五、课堂小结:

  (1) 这节 课我有哪些收获?

  (2) 我应该注意什么问题?

  六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

  (1)每一步的依据分别是什么?

  (2)求方程的解就是把方程化成什么形式?

  先让学生读题分析规律,然后教师进行引导:

  允许学生在讨论后再回答.

  在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

  学生独立解方程方程的解是不是应用题的解

  教师强调解决 问题的分析思路

  学生读题,分析表格中的信息

  教 师根据学生的分析再做补充

  学生思考问题

  教师根据学生的解答,进行规范分析和解答

一元一次方程教学反思 篇9

  数学思考:

  1、学习分析问题找到相等关系并通过列方程解决问题的方法;

  2、通过学习移项解一元一次方程,体会到式子变形的转化作用。

  解决问题:体会解方程中的.化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。

  情感态度:通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。

  教学重点:

  1、找相等关系列一元一次方程;

  2、用移项、合并等解一元一次方程。

  教学难点:找相等关系列方程,正确地移项解一元一次方程。

  教学过程:

  [活动1]展示问题、创设情境

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

  (学生自主分析后,教师提问:)

  1、本题怎样设未知数?

  2、这批书的总数有几种表示法?它们之间有什么关系?

  3、本题哪个相等关系可以作为列方程的依据呢?

  (师生共同列出方程。)

  解:设有x名学生,则可列方程得:

  3x+20=4x—25

  [活动2]学习“移项”解方程

  提问:如何解方程3x+20=4x—25呢?

  (学生分组讨论:①解方程的。目标是什么?②利用什么知识可以实现这种转化?)

  引导学生分析方程的变化:

  3x+20=4x—25

  3x—4x=—25—20

  观察:上面方程的变形有些什么变化?

  归纳:像这样把等式一边的某项变号后移到另一边叫做移项。

  [活动3]总结

  解这个方程的具体过程:

  3x+20=4x—25

一元一次方程教学反思 篇10

  教学目标

  ①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题.

  ②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想.

  ③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想.

  教学重点与难点

  重点:一次函数与一元一次方程的关系的理解.

  难点:一次函数与一元一次方程的关系的理解.

  教学设计

  导语

  前面我们学习了一次函数.实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存.它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系.这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题.这是我们学习数学的一种很好的思想方法.注:点明学习本节内容的必要性:

  (1)函数与方程、方程组、不等式有着必然的联系;

  (2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法.给学生一个本节内容的大致框架.引入新课

  我们先来看下面的两个问题有什么关系:

  (1)解方程2x+20=0.(2)当自变量为何值时,函数y=2x+20的值为零?

  问题:

  ①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?

  ②从问题本质上看,(1)和(2)有什么关系?

  ③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?

  注:用具体问题作对比,帮助学生理解.在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题.探讨归纳

  从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致.你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?

  学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)

  师生共同归纳(教科书39页)(略)

  让学生在探究过程中理解两个问题的同一性.练习巩固

  1.以下的一元一次方程问题与一次函数问题是同一个问题

  序号

  一元一次方程问题

  一次函数问题

  1解方程3x-2=0当x为何值时,y=3x-2的值为O?

  2解方程8x+3=0

  3当x为何值时,y=-7x+2的值为O?

  解:(略)

  注:第4题为开放题,鼓励学生有自己的想法与见解.如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等

  2.根据下列图象,你能说出哪些一元一次方程的`解?并直接写出相应方程的解?

  解:5x=0的解是x=0;x+2=0的解是x=-2;-3x+6=0的解是x=2;

  由图象可得函数关系式是y=x-1,从而得出x-1=0的解是x=1.注:此处练习为补充.可以帮助学生在积累了一些理性认识的基础上,增加更多的形象

  了解.综合应用

  教科书例1(略)

  对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值.鼓励学生进一步思考.注:例1可看成是一次函数与一元一次方程关系的一个直接应用.归纳提高

  框图化小结:

  从数的角度看:

  求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0

  从形的角度看:

  求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标

  从数和形两方面总结,帮助学生建立数形结合的观念.布置作业

  教科书习题第1、2题.

一元一次方程教学反思 篇11

  教学目标

  ①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。

  ②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。

  ③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。

  教学重点与难点

  重点:一次函数与一元一次方程的关系的理解。

  难点:一次函数与一元一次方程的`关系的理解。

  教学设计

  导语

  前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。

  注:点明学习本节内容的必要性:

  (1)函数与方程、方程组、不等式有着必然的联系;

  (2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。

  引入新课

  我们先来看下面的两个问题有什么关系:

  (1)解方程2x+20=0。

  (2)当自变量为何值时,函数y=2x+20的值为零?

  问题:

  ①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?

  ②从问题本质上看,(1)和(2)有什么关系?

  ③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?

  注:用具体问题作对比,帮助学生理解。

  在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。

  探讨归纳

  从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?

  学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)

  师生共同归纳(教科书39页)(略)

  让学生在探究过程中理解两个问题的同一性。

  练习巩固

  1.以下的一元一次方程问题与一次函数问题是同一个问题

  序号

  一元一次方程问题

  一次函数问题

  1解方程3x—2=0当x为何值时,y=3x—2的值为O?

  2解方程8x+3=0

  3当x为何值时,y=—7x+2的值为O?

  解:(略)

  注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等

  2。根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?

  解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;

  由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。

  注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象

  了解。

  综合应用

  教科书例1(略)

  对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。

  注:例1可看成是一次函数与一元一次方程关系的一个直接应用。

  归纳提高

  框图化小结:

  从数的角度看:

  求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0

  从形的角度看:

  求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标

  从数和形两方面总结,帮助学生建立数形结合的观念。

  布置作业

  教科书习题11。3第1、2题。

一元一次方程教学反思 篇12

  一、内容与内容分析

  内容

  一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。

  内容解析

  通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。

  数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。

  教学重点

  经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.

  二、目标和目标解析

  1.目标

  (1)运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法.

  (2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断.

  (3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.

  (4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.

  2.目标解析

  (1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;

  (2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;

  (3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;

  (4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

  三、教学问题诊断分析

  在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的数据较大,在计算上也会给学生带来困难。

  教学难点

  明确问题中的已知量与未知量间的关系,寻找等量关系.

  四.教学支持条件分析

  ppt、白板交互、微课、实物投影

  五、教学过程设计

  1.数学活动1 创设情境,导入新课

  播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为元,与前年相比增长8%,扣除价格上涨因素,实际增长%.

  你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:

  (1)山水市前年居民的人均收入为多少元?

  (2)在山水市,去年售价为1000元的.商品在前年的售价为多少元?(精确到元)

  (学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)

  师引导:说说“增长8%”和“扣除价格因素,实际增长%”的意思;

  生回答:通过查阅资料或其他方式解释.

  师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?

  生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)

  (2)去年价格上涨率=8%-%=%

  生独立做,后展示结果.

  (1)解:设山水第前年居民人均收入为x元

  列方程(1+8%)x=

  解得x=

  答:山水市前年居民的人均收入为元.

  (2)解:设前年的售价为x元

  (1+%)x=1000

  解得x≈元

  答:在山水市,去年售价为1000元的商品在前年的售价为元.

  师生共同解决问题.

  练习:数据表明:从19xx年至20xx年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到20xx年底已经升到亿元,比上一年增长%,比全国各行业的增加值年均增长高出个百分点。

  你能算出20xx年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,20xx年全国其它行业的工业产值是亿元,你能计算出20xx年的总产值吗?

  【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。

  活动二.动手实践、探索新知

  播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.

  用一根质地均匀的木杆和一些等重的小物体,做下列实验:

  (1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;

  (2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;

  (3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

  (4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

  (5) 在木杆左边继续加挂重物,并重复以上操作和记录.

  想想可以怎样替代实验?根据记录你能发现什么规律?

  师引导:没有木杆,重物等实验用具,我们可以设计替代实验。

  生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动

  师介绍:展示两种试验方法,及数据.

  师问:根据记录你能发现什么规律?

  生:思考回答。

  师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程. x

  l

  2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。

  【设计意图】

  活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验.

  说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。

  布置作业。

  请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程.

  六、目标检测设计

  小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长米。你能帮他俩解决这个问题吗?

  【设计意图】

  对本节重点内容进行现场检测,及时了解教学目标的达成情况。