平行四边形的面积计算教学案例本站推荐3篇(平行四边形面积计算教材分析)
下面是范文网小编收集的平行四边形的面积计算教学案例本站推荐3篇(平行四边形面积计算教材分析),供大家参考。
平行四边形面积计算教学反思
昌乐县实验小学
代云霞
在教学中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学片断中,教师带领学生进行实地考察幼儿园建筑工地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到“灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
(四)初步体验科学探究的方法
科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观这个片断的教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。而现有的教材较多地呈现了知识的结论,很少反映知识的产生过程。因此,我在进行教学时对教材进行了重组,在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。
《平行四边形面积计算》教学设计
教学目标
1、知识与技能:让学生亲自参与课堂教学,如观察、操作、分析、讨论、归纳等数学活动过程,探索并掌握平行四边形的面积计算方法,能正确的计算平行四边形的面积,并应用公式解决简单的实际问题。
2、过程与方法:让学生体会转化方法的价值,进一步体会“等积变形”的思想方法,培养学生应用已有的知识经验解决新问题的能力,发展学生的空间观念的推理能力。
3、情感与态度:让学生在动手操作、探索思考的过程中,提高“空间与图形”内容的学习兴趣,逐步形成积极的数学学习情感。【教学重点】平行四边形的面积计算 【教学难点】平行四边形面积的推导过程
【教学准备】多媒体课件,每人一张平行四边形的纸片(与例题同样大小),小组内准备好教材的三个图形及剪刀 【教学过程】
一、创设情境,质疑引新知
1、课件出示:一个长方形和一个平行四边形的停车位
谈话:小明和小芳住在同一小区,但小明家住在西面,可停车位却在东面,而小芳家住在东面,可停车位却在西面,为了方便,他们商量交换停车位,怎样交换才公平呢?(面积相等)那么这两个停车位的面积相等吗?(无法判断)
2、呈现格子图后,问:现在你能比较吗? 数格子的方法:不满一格算半格(发现比较麻烦)问:还有其他更好的方法吗?(割补法)板书:割补
3、课件出示:平行四边形转化为长方形的过程
4、小结:通过割补的方法我们可以把平行四边形转化为已经学过的长方形来比较,知道了他们的面积是相等的。这种转化的思想在计算或比较平面图形的面积时经常用到。今天我们就用这种方法来研究平行四边形面积的计算。
板书:平行四边形面积的计算
[设计意图:以学生已有的知识经验和生活经验为依托,根据数学学科的特点注重渗透数学思想和方法。教材中的例1是为了渗透“转化”这种思想方法为后面的学习埋下伏笔,而我们发现在实际教学中例1的两张图较为简单,因此我组将它改成一个平行四边形和一个长方形,通过不出现格子图——呈现格子图,用数格子的方法判断(麻烦)——割补平移,让学生初步感受转化的方法在图形面积计算中的作用。这样既体现了数学教学的层次性,也达到了与例1相同的教学目的,又很好地与例2相衔接。]
二、猜想验证,探索方法
1、大胆猜想,自主探索
(1)谈话:我们已经知道长方形的面积和它的长和宽有关,那同学们不妨大胆猜想一下平行四边形的面积可能与它的什么有关? 预设:
生1:底和高,底乘高等于平行四边形的面积。生2:相邻两边的积等于平行四边形的面积。
师:同学们有了这么多想法真了不起,通常我们为了证明一个猜想是否正确,都需要我们去做什么?(验证)
小组合作:每人一个与例2相同的平形四边形,想办法来验证你们的猜想,看能不能在活动过程中,发现平行四边形面积的计算方法。(2)交流操作的情况(根据学生反馈课件相应演示)
方法一:沿着平行四边形的高把图形剪开,把平行四边形分成一个直角三角形和一个直角梯形,将左边的三角形平移到右边,得到一个长方形。
方法二:沿着平行四边形的高把图形剪开,把平行四边形分成两个直角梯形,将左边的平移到右边,得到一个长方形。学生可能还有其他剪法,可以选择性的实物投影展示(3)体会“等积变形”,引发猜想
问:这几种剪法有什么相同的地方?为什么都沿着平行四边形的高剪开?(长方形有四个直角,只有沿高剪开,拼时才能出现直角。)把平行四边形转化成长方形,什么变了?什么没变? 使学生明确:形状变了,面积没变。
(4)小结:刚才我们把一个平行四边形沿着一条高剪开后,通过平移就把这个平行四边形转化成长方形,在转化的过程中面积没有变,平行四边形的底就是转化后长方形的长,平行四边形的高就是长方形的宽。
(5)提问:那是不是任意一个平行四边形都能转化成长方形?它们的边之间是不是都有这样的关系呢?
[设计意图:让学生主动探究一个平行四边形转化为长方形的过程中,一方面鼓励学生用不同的方法实现转化,另一方面强调沿着高剪开,以便达到转化成长方形的目的。这样,激活了学生的已有经验,加深学生对图形转化的理解,使学生的探索活动具有一定的挑战性,又利于最终教学目标的实现。]
2、实践验证,得出结论
(1)请同学们按小组剪下P127页的三个平行四边形进行验证(要求:把平行四边形的底和高填写在表格里,再把转化后的长方形的长和宽填写在表格里,并计算出长方形的面积。)转化成的长方形 平行四边形
长(cm)宽(cm)面积(cm2)底(cm)高(cm)面积(cm2)(2)小组讨论
转化后的长方形与平行四边形的面积相等吗?为什么?填出平行四边形的面积。
长方形的长和宽与平行四边形的底和高有什么关系?你是怎样知道的?
(3)根据学生的讨论教师归纳:任何一个平行四边形都能转化成长方形,并且平行四边形的底与转化后长方形的长相等,高与长方形的宽相等。(4)那么根据长方形的面积公式,怎样求出平行四边形的面积?你是怎样想的? 板书:
长 方 形 的 面 积 = 长 × 宽
平行四边形的面积 = 底 × 高(5)用字母表示公式
谈话:如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,请用字母写出平行四边形的面积公式。板书:
平行四边形的面积 = 底 × 高
S = a × h S = ah(6)小结:通过刚才同学们亲身体验,我们得出了平行四边形面积的计算公式,也就是说平行四边形的面积与它的底和高有关,而并不与它的邻边有关。
(7)指导学生完成“试一试”
先独立解答再集体交流,强调求平行四边形的面积要两个条件,即底和高。
[设计意图:这个环节的学习充满着观察、操作、验证、推理和归纳等探索性与挑战性的活动,引导学生投入到探索与交流的学习中,经历了由个别现象——普遍规律的验证过程与平行四边形面积公式推导过程,理解了平行四边形面积公式,感受了转化的数学思想。]
三、巩固应用,提高能力
1、完成练一练(第三张图形适当变化,出示一条底,两条不同边上的高)
先学生独立计算面积,再集体交流。
强调:计算平行四边形的面积一定要找到对应的底和高。(课件出示)
2、练习2第1题
(1)理解题意:使画出的平行四边形与给出的长方形面积相等,长方形的长×宽=平行四边形的底×高=15,所以底和高的情况可能有5和3,3和5,1 和15,15和1(2)学生操作,画出平行四边形
(3)追问:如果长方形的面积是18,那么平行四边形的底和高可能是多少?(口答)如果平行四边形的面积是24,那么和它面积相等的长方形的长与宽分别是多少呢?
四、拓展延伸,发展思维
1、练习2第5题
(1)学生独立计算长方形的面积与周长,共同订正
(2)提问:如果把这个长方形拉成平行四边形后周长有没有发生变化?(没有)面积呢?(学生交流)
(3)课件演示过程:平行四边形的高与长方形的宽比较长度。发现:长方形的长与拉成的平行四边形的底是一样的,而长方形的宽与拉成的平行四边形的高并不相等,高比长方形的宽短了,所以面积变小了。
(4)小结:把长方形拉成平行四边形后,周长不变,面积变小。如果继续拉,拉的越平,它的高就越短,面积也就越小了。(课件演示动态变化过程)
2、小小设计师。
小区要在一块长8米,宽6米的空地上建一个面积是30平方米的平行四边形观赏鱼池(底和高是整米数),如果你是设计师你如何设计? [设计意图:练习题设计分为“巩固应用”与“拓展延伸”两部分,注重练习设计的层次性,为节省时间将同一层次的练习作为课后作业。让学生灵活运用所学知识,使其在解决问题的过程中加深对平行四边形面积计算方法的理解。最后的开放题设计培养了学生全面分析、解决问题的能力与审美观,体会数学知识在日常生活中的实际应用价值。]
五、全课总结
以学生日记的形式出现,让全班同学一起回顾所学知识进行填空。通过今天这节课的学习,让我感受到了数学知识的密切联系,原来平行四边形的面积可以转化为()的面积来进行计算,平行四边形的底就是转化后长方形的(),平行四边形的()就相当于转化后长方形的()……
六、布置作业 练习二的第2、3、4题 【板书设计】 平行四边形的面积计算 割补
长 方 形 的 面 积 = 长 × 宽 平行四边形的面积 = 底 × 高 S = a × h S = ah
《平行四边形面积》教学案例
北关小学 丁畅
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册P80—81《平行四边形的面积》。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:自制平行四边形框架、方格纸、多媒体课件、平行四边形卡片、剪刀、三角板、直尺等。
教法学法:本节课主要引导学生采用自主探索、动手操作、猜想验证、合作交流的学习方法。教师在教学过程中引导探究,组织讨论,指导点拨,启发帮助。使教法和学法和谐地统一。
我力求体现以学生自主学习贯穿教学始终,在师生共同创造的问题情境下进行探究活动,使学生掌握平行四边形面积的计算方法。在此过程中巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。同时也培养了学生基本的动手操作能力,使其获得基本的活动体验,最终为学生形成良好的数学素养打下基础。
教学过程:
一、巧设情境,铺垫导入
师:一天,阿凡提正在卖毛毯,地主巴依走过来。一眼就看中了阿凡提的花毛毯,聪明的阿凡提拿出两块毛毯,说:“亲爱的巴依老爷,如果你能从这两块毛毯中挑出一块大的来,我就不收你的钱,可是如果您选错了,你就得答应我把欠长工的工钱都给付清,怎么样?” 巴依一听不收钱,马上两眼放光,一把抓起这块长方形的毛毯,说:“这块大,我要这块!”
同学们,巴依老爷认为长方形的毛毯大,你们也来猜一猜?
生1:长方形的毛毯大。生2:平行四边形的毛毯大。生3:两个毛毯一样大。
师:想一想,我们说的毛毯的大小指的是毛毯的什么? 学生讨论,得出结论:毛毯的大小指的是毛毯的面积。
师:以前我们学过哪些图形的面积?它们的计算公式又是什么呢? 生:长方形的面积=长×宽
正方形的面积=边长×边长
(这一环节中部分同学会把长方形和正方形面积与周长计算公式弄混淆,我不对其进行评价,而是由学生互评)
生:用字母表示长方形面积计算公式:S=ab
用字母表示正方形面积计算公式:S=a2
(根据学生的回答进行板书)
师:要想知道阿凡提手中的毛毯到底哪一块大,就要靠大家来算一算这两个图形的面积了,你会计算哪个毛毯的面积呢?
学生讨论,小组交流,汇报结果:都会计算长方形毛毯的面积,只需要量出它的长和宽就可以了。
师:那么这个平行四边形毛毯的面积怎样求呢?要想求平行四边形的面积需要知道哪些条件呢?今天我们就来共同学习习近平行四边形的面积。板书课题:平行四边形面积(大家齐读课题)
二、动手操作,合作探究
(一)利用方格,初步探究
师:根据自学提示自学课本第80页,思考下列问题:
1、图中分别是什么图形?
2、图中是用什么方法来计算图形面积的?
3、用这种方法来计算图形的面积时应注意什么?
4、完成表格,说一说你有什么发现?
5、通过运用这种方法来计算图形的面积,你有什么体会?
(小组内交流,然后派代表汇报结果)
生1:图中运用了数方格的方法来计算长方形和平行四边形的面积。
生2:运用数方格的方法计算图形面积时,应注意每一小格表示1平方米,不满一格的按半格计算。
生3:图中两个图形的面积相等。
生4:图中的长方形的长和平行四边形的底相等,宽和平行四边形的高相等。生5:长×宽正好得到的是长方形的面积,底×高得到的结果正好和平行四边形的面积相等。
生5:运用数方格的方法计算图形的面积太麻烦。
师:想一想如果我想计算出学校平行四边形花坛的面积还能用数方格的方法吗?(学生都一致认为用数方格的方法来计算较大的图形的面积很不切实际)生提出疑问:如果计算平行四边形的面积能像计算长方形、正方形面积那样有一个固定的计算公式就好了。
(二)小组合作,初步设疑
师:如果想计算平行四边形的面积,你认为需要知道哪些条件?想一想是否可以把平行四边形变成一个熟悉的图形来计算出它的面积?小组内互相交流自己的看法。(根据学生的交流和回答,结果归为两大类)
小组1:平行四边形具有不稳定性,我们可以把平行四边形拉成我们学过的长方形,因为长方形的面积=长×宽,所以平行四边形的面积也应该是用这两条边的长度相乘。
根据该小组的分析,板书——猜测1:平行四边形的面积=底×与底相邻的边 小组2:通过刚才数方格的数据,我们推测平行四边形的面积正好就等于它的底×高。
根据该小组的分析,板书——猜测2:平行四边形的面积=底×高
(三)动手操作,再次探究。
师:这两种猜测到底哪一种是正确的呢?根据提示,小组合作,动手试一试。探究提示:
1、拿出手中的平行四边形框架,小组合作,在纸上描出平行四边形。
2、将平行四边形框架拉成长方形框架,放在纸上,使长方形的长和平行四边形的底边重合,再描出长方形。
3、对比平行四边形的面积和拉成的长方形的面积,说一说你有什么发现? 小组汇报结果,有的认为面积增大,有的认为面积减小,也有的认为面积不变。
老师展示多媒体课件中将平行四边行拉成长方形的动画,让学生仔细观察。
拉
邻边
底
师:通过阴影部分面积的对比,你发现了什么? 生1:平行四边形中阴影部分面积小一点,长方形中阴影部分面积大一点。生2:说明把平行四边形拉成长方形面积变大了。
师:既然平行四边形拉成长方形面积变大了,那么推测1中底×与底相邻的边求的是不是平行四边形的面积了?如果不是,它又是谁的面积呢?
学生讨论得出结果:底×与底相邻的边求的是长方形的面积。
师小结:把平行四边形拉成长方形以后,面积变(),平行四边形的底变成长方形的(),与底相邻的边变成了长方形的(),所以底×与底相邻的边其实就相当于长×宽,求的也就是长方形的面积。
师生共同小结:平行四边形的面积=底×与底相邻的边是错误的。师:想一想还有其他的方法把平行四边转化成长方形吗?
(四)动手操作,深入探究
1、图形转换
通过小组合作,动手操作,学生汇报结果: 生1:可以把平行四边形拼成长方形。
师:你们是如何拼的?把你的步骤和大家分享一下吧!(汇报时,引导说清楚“我是沿着平行四边形的……剪开,把它拼成……形”。)根据学生的汇报,在多媒体课件中进行展示。
在学生动手操作的过程中,可能有很多种剪拼方法,教师指导学生用最简单的方法进行剪拼,并把有代表性的作品在实物展台上给大家展示,并由学生自己上台进行描述,由其他学生进行评价。
师:把平行四边形剪拼成长方形时为什么要沿着平行四边形的高剪开? 生:因为长方形里有四个直角,只有沿着高剪开才能剪成长方形。
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,再次观察平行四边形剪拼成长方形的过程,小组内思考、交流:
(1)平行四边形的底与拼成的长方形的长有什么关系?(2)平行四边形的高与拼成的长方形的宽有什么关系?(3)平行四边形的面积与拼成的长方形的面积有什么关系?
(小组讨论交流,引导学生边动手操作边观察,从中得出剪拼前平行四边形的面积、底和高分别与剪拼后的长方形的面积、长和宽相等。)
学生分小组汇报结果,其他小组进行评价,最终得出结论:这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?
生:平行四边形的面积等于底乘高。
(教师根据学生回答板书:平行四边形的面积=底×高)
师:自学课本81页,如何用字母表示平行四边形面积计算公式? 生根据自学汇报结果:如果用S表示平行四边形的面积,a表示底,h表示高,用字母表示平行四边形面积计算公式 S=a×h=ah(教师根据学生回答板书:S=ah)
4、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本并质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
mm大货车 5m小汽车3m
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?
4厘米6厘米5厘米
厘米A、×4C、×6B、5×4D、5×6(本题旨在引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
四、归纳总结,提高认识
通过今天的学习,你有什么收获?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?在计算平行四边形面积是应注意什么? 师:同学们,现在我们再次回到阿凡提卖毯的故事中,用我们今天所学的知识来判断一下到底哪个毛毯大一些?
根据课件中展示的两块毛毯的相关数据,计算出它们的面积后汇报结果。生:这两个毛毯的面积一样大。所以巴依老爷输了。
五、作业布置
课本82页3、4