您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 办公范文 > > 工作总结 > 正文

冀教版小学数学知识点总结3篇 冀教版数学1-6年级知识点

2024-05-14 10:09:40工作总结

冀教版小学数学知识点总结3篇 冀教版数学1-6年级知识点

  下面是范文网小编收集的冀教版小学数学知识点总结3篇 冀教版数学1-6年级知识点,以供参阅。

冀教版小学数学知识点总结3篇 冀教版数学1-6年级知识点

冀教版小学数学知识点总结1

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

冀教版小学数学知识点总结2

  小学数学知识点全总结之一:运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.

  ■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.

  小学数学知识点全总结之二:简易方程

  ■用字母表示数

  用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

  ■用字母表示数的注意事项

  1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

  2、当1和任何字母相乘时,“ 1” 省略不写.

  3、数字和字母相乘时,将数字写在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,应注意书写格式

  ■等式与方程

  表示相等关系的式子叫等式.

  含有未知数的等式叫方程.

  判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右两边相等的未知数的值,叫方程的解.

  求方程的解的过程叫解方程.

  ■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

  ■解方程的方法

  1、直接运用四则运算中各部分之间的关系去解.如x-8=12

  加数+加数=和 一个加数=和-另一个加数

  被减数-减数=差 减数=被减数-差 被减数=差+减数

  被乘数×乘数=积 一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商 被除数=除数×商

  2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

  先把3x看作一个数,然后再解.

  3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.

  4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20

  先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.

  小学数学知识点全总结之三:比和比例

  ■比和比例应用题

  在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.

  ■解题策略

  按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

  ■正、反比例应用题的解题策略

  1、审题,找出题中相关联的两个量

  2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

  3、设未知数,列比例式

  4、解比例式

  5、检验,写答语

冀教版小学数学知识点总结3

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的.乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13