初三知识点总结数学
【导语】以下是网友“q8490”整理的初三知识点总结数学(共7篇),供大家品鉴。
本单元在学生已经初步认识了长方形和正方形基础上,进一步系统的学习长方体和正方体的有关知识,为进一步认识其他立体图形和学习有关计算打好基础。本课时内容主要探究长方体的特点,为后面学习长方体和正方体的表面积和体积做了准备。
在吃透教材基础上,我确定了以下的教学重点和难点:掌握长方体的面、棱、顶点的特征,认识其长、宽、高是本节课的重点;难点在于形成长方体的概念,发展学生的空间观念。针对几何知识教学的特点以及小学生以形象思维为主,空间观念薄弱的特点,这节课我多次让学生动手操作实践,让学生在看一看、量一量、摸一摸等实际操作中不断积累空间观念,使自己的多种感官参与活动,丰富自己的感性认识,掌握几何形体的特征,不断积累空间观念,并运用多媒体课件辅导教学。通过一系列有序活动培养学生动口、动手、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
教学中激发学生的过程意识。在教学中应通过一些探究性的实践活动,让他们在活动中逐步感受,逐步领悟,逐步形成,逐步发展。几何图形是很抽象的,在课堂教学中通过让学生用手摸,用眼观察去体验立体图形,循序渐进最后抽象出长方体,并总结出长方体的特征。这让学生经历了“观察——思考——实践——总结”这一探究过程。整个过程,从观察思考,到讨论、操作、探索发现,每个学生都积极参与,经历了探索长方体棱、顶点及特点的全过程。只有这样的过程,学生才能最大限度地焕发创造力,迸发创新的火花。
数学教学工作,坚持面向全体学生,围绕“人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展”展开教学工作,跟以往进行比较反思,具体体此刻:
一、摒弃旧的教学观念,建立全新的教学理念。在教学中,改变了自己在以往在课堂教学中的主角主角:将要讲述的资料为自己编好“剧本”,然后自己在讲坛上尽情演绎,将知识灌输给学生。而此刻是给学生编好“剧本”,为学生创设学习的情境,让学生在课堂上充当主角,在教师的引导下进行演绎,自主、合作地获取知识。事实证明,这一教学理念的实施,从根本上改变了过去教师讲学生听的师生各自信息无互动的枯燥学习模式,使学生参与学习的热情大大提高,学习的效果不言而喻。如:在“有理数加减运算法则”的教学上,常规的教法是透过“向东、向西的连续走动几米,最终是向东或向西走了几米并结合数轴总结出有理数加法法则,然后再学习有理数减法转化为加法的法则,最后各自按法则计算”,而大家很清楚,课本上的有理数加法法则对于刚升上初中的学生来说是很繁、很难的:确定和的符号要分同号、异号,异号的还看绝对值谁大;确定和的绝对值又要分将两加数的绝对值是相加还是相减。那里学生存在着几大困难:首先,“绝对值”是新学知识,学生并不熟练,还要要求学生用“绝对值”来总结出加减法则更难。其次,法则分类复杂:类中再分类。因此,学生要运用法则计算很难,不要说理解法则,就是要记清楚法则也不是
易事。因此,我们在新的教学理念及“非线性主干循环活动型单元教学模式”的启导下,采取了用学生所熟悉的“输赢球”的模式去让学生学习这一主干资料:堂上让本班学生与邻班学生含别代表足球赛的交战双方,用正、负数表示上、下半场及全场的输赢球数,透过若干有代性的案例的计算,学生很容易理解和体会到:上、下半场一赢再赢或一输再输,结果必然是赢或输得越多(数字累加);有输有赢用输赢抵消也很容易得出结果。有理数的加减法用“输赢球”去理解算理学生很易理解和掌握,实践证明,基础很差的同学也能很快掌握。
在新课标的新理念下,数学教学要尽可能地让学生去做一做从中探索规律和发现规律,透过小组讨论到达学习经验共享,培养合作意识、培养交流的潜力、提高表达潜力。如在《用字母表示数》一课,透过用牙签棒搭正方形游戏引入来创设学习的情境,学生分小组按要求搭正方形,然后讨论回答:1、按图搭正方形2、找出正方形的个数与牙签根数之间的关系3、写出n个正方形需用的牙签根数(用含n的式子表示)4、展示成果,组间交流总结给出充分的时间让学生讨论发现、交流、评议,教师鼓励、支持、启导,但不能占用太多时间。应对他们的研究,突出用字母表示数的简明性、一般性,比较用文字、用画图让学生体会其优越性,并指出在学习完本章书后你们就会明你们所得出的式子4+3(n-1)、2n+(n+1)、4n-(n-1)都能够化简成为1+3n,从而为今后的学习埋下伏笔。这种开放的课堂,能够让学生在有好处的活动中亲身参与、独立探索、合作交流,并逐步构建自己的数学知识、发展自己的数学潜力和创新意识。再如,在第四章的学习中,透过学生对图标的收集与交流、制作长方体、正方体纸盒,然后展开去展现它们丰富多样的展开图,再交流总结;第五章中的游戏实验式的教学等等,无不体现学生的自主学习与合作交流的学习新理念。
二、教师应从知识的传授者转变为学习的组织者、引导者、合作者与共同研究者,要让学生演好主角的主角就务必为学生设计好适合学生演绎的剧本。因些,本人认真钻研教材,为群众备课和学习材料的设计做好充分的准备。由于本学期教的是新教材,所以本人个性注意新旧教材的比较,把握新教材的新要求、新动向,同时,还注意不同版本新教材之间在新知识的引入、资料及练习的编排上的区别与联系,力求使学习材料的设计更接近学生最近的发展区,而练习的编排按梯度分层。教学资料我们强调抓住主干,如对第二章“有理数的运算”,我们级科组经过反复的研讨,抓住了“训练学生各种运算技能”这一主干,对全章的教材进行了整合,效果比课本的做法更好,事实证明学生对加减的算法掌握得较好。但美中不足的是对正负数的定义过于淡化,未突出引入负数的作用或必要性,个性没有利用温度计等实例突出低于0的数用负数表示且负得越多数值越小,这是导致后面有理数大小比较学生出错较多的一个很主要的原因。又如在第四章、第八章、第九章的教学,我们充分利用了课室的电教平台,运用“几何画板”及教学光盘中的课件进行辅助教学,十分形象、生动,大大提高了学生的参与度。
三、尊重个体差异,面向全体学生“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展。”这是新课标努力提倡的目标,这就要求教师要及时了解和尊重学生的个体差异,承认差异,要尊重学生在解决问题的过程中所表现出来的差别,不挖苦、不讥讽,相反在问题情境的设置、教学过程的展开、练习的安排中,都要尽可能让全体学生能主动参与,使学生能根据自己的实际状况选取有所为和有所不为或有能者有大作为,小能者有小作为的练习。如在七年级第二学期,学完“一元一次方程的应用”后要求学生完成一些给出方程编写联系实际的应用题,并让学生交流评议,这样有能者得到淋漓尽致的发挥,理解不深者也能够仿照例题的背景透过借鉴书本完成。
四、在课堂教学上突出了精讲巧练,做到堂上批改辅导和及时的反馈。但由于人数较多,新学生的数学层次参差,有针对性的辅导还不完善。另学生学习的参与度还能够提高,体此刻小组讨论、新知识的举例交流等合作学习,今后还可适当增加。七年级的学生学习方法较单一,可加强学法的指导。
五、改变单纯以成绩高低评价学生的学习状况的传统评价手段,逐步实施多样化的评价手段与形式:既关注学生知识与技能的理解与掌握,又关注学生情感与态度的构成与发展;既关注学生的学习结果,又关注他们在学习过程中的变化与发展。本学期所任教的班级学生生性好动任性,自制的潜力比较差,容易构成双差生,为此,我在反复教育的基础上,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。如镜威同学平时不太安份,但数学测评做得比较多,我及时在我所教的两个班中表扬了他,使其感到不小的惊喜,并在之后的学习较为用心。班里学生有好几个基础较差,理解潜力较弱,我反复强调会与不会只是迟与早的问题,只要你肯学。同时,我加强课外的辅导,想办法让他们体验学习成功的喜悦。
在新教学改革中,我深感在教学的理念上、教师与学生在教与学的主角上、教学的方式方法上、师生的评价体系上都发生了根本的转变,这都给教师提出了新的挑战,因此,只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。
指导思想
以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。
工作目标
1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。
2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。
3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。
4、组织好学生的数学实践活动,以调动学生学习用心性,丰富学生课余生活,促进其全面发展。
主要工作
1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。
备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布校园网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。每一位教师在个人研究和群众备课的基础上构成适合自己、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。
提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1-2篇较高水平的反思或教学案例,及时发布在向校园网上,学校将及时进行评审。
教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在校园网数学组板块中的留言板中。
2、课堂教学课堂是教学的主阵地。
教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。课堂上要用心的创设有效的教学情境,要重视学习方法、思考方法的渗透与指导,重视数学知识的应用性。学校将继续透过听“推门课”促进课堂教学水平的提高,发现教学新秀。公开课力求有特点,能侧重一个教学问题,促进组内教师的研讨。一学期做到每人一节,年轻教师上两节。课堂对于比较成熟的公开课或研讨课鼓励大家录像,保存资料,及时地向校园网推荐。
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
注意:抛物线位置由决定.
(1)决定抛物线的开口方向
①开口向上.
②开口向下.
(2)决定抛物线与y轴交点的位置.
①图象与y轴交点在x轴上方.
②图象过原点.
③图象与y轴交点在x轴下方.
(3)决定抛物线对称轴的位置(对称轴:)
①同号对称轴在y轴左侧.
②对称轴是y轴.
③异号对称轴在y轴右侧.
(4)顶点坐标.
(5)决定抛物线与x轴的交点情况.、
①△>0抛物线与x轴有两个不同交点.
②△=0抛物线与x轴有的公共点(相切).
③△<0抛物线与x轴无公共点.
(6)二次函数是否具有、最小值由a判断.
①当a>0时,抛物线有最低点,函数有最小值.
②当a<0时,抛物线有点,函数有值.
(7)的符号的判定:
表达式,请代值,对应y值定正负;
对称轴,用处多,三种式子相约;
轴两侧判,左同右异中为0;
1的两侧判,左同右异中为0;
-1两侧判,左异右同中为0.
(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
(10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;
②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
③二次函数(经过原点,则。
(11)二次函数的解析式:
①一般式:(,用于已知三点。
②顶点式:,用于已知顶点坐标或最值或对称轴。
(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。
中考数学知识点总结3
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
一、初中数学基本知识
㈠、数与代数
A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AMAN=A(MN)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
20xx年中考数学基础知识总结20xx年中考数学基础知识总结
B、方程与不等式
1、方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diata”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,AC>BC
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
二、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,间的关系式可以表示成=XB(B为常数,不等于0)的形式,则称是X的一次函数。②当B=0时,称是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数=X的图象是经过原点的一条直线。③在一次函数中,当〈0,B〈O,则经234象限;当〈0,B〉0时,则经124象限;当〉0,B〈0时,则经134象限;当〉0,B〉0时,则经123象限。④当〉0时,的值随X值的增大而增大,当X〈0时,的值随X值的增大而减少。
三、空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
20xx年中考数学基础知识总结建造师考试建筑工程类工程师考试网
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,
y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x的增大而减小。
①x的取值范围是x0,
y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则
(1)△OPA的面积.
(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。
矩形PCEF面积=,平行四边形PDEA面积=
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① 整数 ②分数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a0 a是正数;a0 a是负数;
a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数 0,小数-大数 0.