您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

数学必修一第一章第三节知识点大全3篇 高中数学必修一第一章第三节

2023-03-20 09:29:00综合

数学必修一第一章第三节知识点大全3篇 高中数学必修一第一章第三节

  下面是范文网小编收集的数学必修一第一章第三节知识点大全3篇 高中数学必修一第一章第三节,供大家参考。

数学必修一第一章第三节知识点大全3篇 高中数学必修一第一章第三节

数学必修一第一章第三节知识点大全1

  掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。

数学必修一第一章第三节知识点大全2

  重视改错错不重犯。

  一定要重视改错的这份工作,做到错不再犯。初中数学教学中采用的方法是告诉学生所有可能的错误,只要有一个人犯了错误,就应该提出,以便所有的学生都能从中吸取教训。这叫“一人有病,全体吃药。”

  高中数学课没有那么多时间,除了一小部分那几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药 。如果学生“生病”而忘了吃药,那么没有人会一次又一次地提醒他要注意什么。如果能及时改错,那么错误就可能转变为财富,成为预防针。但是,如果不能及时改错,这个错误就将形成一处“地雷”,迟早要惹祸。

  有的学生认为,自己考试成绩上不去,是因为太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果初学驾驶的人真正掌握了这一套,请问,可以同意他开车上路吗?恐怕他知道他还缺乏练习。一两次你能正确地完成任务,但这并不意味着你永远不会犯错误。练习的数量不够,才是学生出错的真正原因。大家一定要看到,如果自己的基础知识漏洞百出、隐患无穷,那么,今后的数学将是难以学好的。

数学必修一第一章第三节知识点

数学必修一第一章第三节知识点大全3

  一.知识归纳:

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N_

.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)补集:CUA={x|xA但x∈U}

  注意:①?A,若A≠?,则?A;

②若,,则;

③若且,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

  4.有关子集的几个等价关系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

  5.交、并集运算的性质

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  二.例题讲解:

【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}

  对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

  分析二:简单列举集合中的元素。

  解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以选B。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合,,则(B)

  A.M=NB.MNC.NMD.

  解:

  当时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A_={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A_的子集个数为

  A)1B)2C)3D)4

  分析:确定集合A_子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

  解答:∵A_={x|x∈A且xB},∴A_={1,7},有两个元素,故A_的子集共有22个。选D。

  变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

  A)5个B)6个C)7个D)8个

  变式2:已知{a,b}A{a,b,c,d,e},求集合A.

  解:由已知,集合中必须含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个.

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

  解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,

∴∴

  变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

  解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

  又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

  分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

  解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

  综合以上各式有B={x|-1≤x≤5}

  变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

  解答:M={-1,3},∵M∩N=N,∴NM

①当时,ax-1=0无解,∴a=0②

  综①②得:所求集合为{-1,0,}

【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

  分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。

  解答:(1)若,在内有有解

  令当时,

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程有实根,求实数a的取值范围。

  解答:

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

【同步练习题】

  一、选择题(每题4分,共40分)

  1、下列四组对象,能构成集合的是()

  A某班所有高个子的学生B的艺术家

  C一切很大的书D倒数等于它自身的实数

  2、集合{a,b,c}的真子集共有个()

  A7B8C9D10

  3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()

  A.6B.7C.8D.9

  4、若U={1,2,3,4},M={1,2},N={2,3},则CU(M∪N)=()

  A.{1,2,3}B.{2}C.{1,3,4}D.{4}

  5、方程组的解集是()

  A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}

  6、以下六个关系式:,,,,,是空集中,错误的个数是()

  A4B3C2D1

  7、点的集合M={(x,y)|xy≥0}是指()

  A.第一象限内的点集B.第三象限内的点集

  C.第一、第三象限内的点集D.不在第二、第四象限内的点集

  8、设集合A=,B=,若AB,则的取值范围是()

  ABCD

  9、满足条件M=的集合M的个数是()

  A1B2C3D4

  10、集合,,,且,则有()

  AB

  CD不属于P、Q、R中的任意一个

  二、填空题(每题3分,共18分)

  11、若,,用列举法表示B

  12、集合A={x|x2+x-6=0},B={x|ax+1=0},若BA,则a=__________

  13、设全集U=,A=,CA=,则=,=。

  14、集合,,____________.

  15、已知集合A={x|},若A∩R=,则实数m的取值范围是

  16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.

  三、解答题(每题10分,共40分)

  17、已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

  18、已知二次函数()=,A=,试求的解析式

  19、已知集合,B=,若,且求实数a,b的值。

  20、设,集合,,且A=B,求实数x,y的值。