《分式的基本性质》说课稿3篇 分式的基本性质教案优质课
下面是范文网小编整理的《分式的基本性质》说课稿3篇 分式的基本性质教案优质课,以供参考。
老师们:
大家好!今天我说课的内容是北师大版八年级下册数学第三章《分式》第一节第二课时《分式的基本性质》。下面,我将从九个方面对本课加以说明。
一、说教学理念
我的教学理念是:根据建构主义理论,以新课改理念为指导,以人为本,面向全体学生,从最后一名抓起,努力使我的课堂真正成为:民主的、平等的、开放的、和谐的、充满了激趣的、师生互动、交流的课堂。培养学生学习对生活有用的数学;学习对终生发展有用的数学!
二、说学情调查
八年级学生具备了一定的数学知识和技能,具有较强的争胜心和表现欲,迫切希望得到老师的表扬和鼓励;但思维的深度和广度还不够;需要老师巧妙设疑、灵活引导、及时激励。
三、说教材分析
【1】、教材所处的地位、作用及与前后的联系
本节教材是本单元的第一节,从知识结构来看,本节是学生在已经掌握分数的基本性质和分式的定义的基础上,进一步学习分式的基本性质。也为后面学习分式的有关运算打下基础;从研究方式上来看,它是自主探究——合作交流相结合的学习方法的又一次应用;从解决问题的思想方法来看,它强化了学生的类比转化数学思维能力,促进了数学修养的提高。所以这一节无论从知识性还是思想性来讲,在初中数学教学中都占有重要的地位。
【2】、三维教学目标
根据教学大纲和学生的认知水平,我确定本节课教学目标是:
(一)知识与技能:
1、推导并掌握分式的基本性质,灵活运用分式的基本性质进行分式的变形。
2、了解分式约分的步骤和依据;掌握分式约分的方法。
3、了解最简分式的定义,能将分式化为最简分式。
(二)过程与方法:
使学生通过观察、讨论、类比等活动,获得一些探索性质的初步经验。
(三)情感与价值观:
1、通过与分数的类比,使学生初步掌握类比的思想方法:即类比— —联系— —归纳— —拓展。
2、培养学生与同伴的合作交流能力。
【3】、教学重点
利用分式的基本性质约分。
【4】、教学难点
分子、分母是多项式的分式约分。
四、说教法设计
根据本节课的内容特点及学生的实际水平,我采用启发式教学,采取类比、观察、讨论、归纳等方法,注重创设问题情景,巧妙设置问题链,充分暴露思维过程,发展学生的思维能力。
五、说学法指导
“授人以鱼,不如授人以渔”。 我设计的学法:自主探究——合作交流相结合;形式上有:自学、对学、群学、展示、点评等。
六、说教学用具
多媒体课件,充分利用电脑多媒体优化数学课堂教学,从生活实际出发,激发学生学习的兴趣,提高课堂效率。
七、说教学过程
1、下列各式中,属于分式的是( )
A、 B、 C、 D、
(一)、复习提问 温故知新
2、当x=____时,分式 没有意义。
3、分式的值为零的条件是 。
设计意图:本环节复习前面学习的知识方法,使学生养成及时复习巩固的好习惯。
(二)、创设情景 导入新课
1、幼儿园阿姨要把3个苹果平均分给6个小朋友,每个小朋友得到多少苹果?
2、
3、分数的基本性质是什么?
设计意图:通过三个问题引导学生独立思考、回忆分数的基本性质,要抓住“分子与分母同时”“乘以(或除以)同一个”“不等于零”这几个关键字。为推导分式的基本性质打下基础。
(三)、自学释疑 合作交流
2、 类比分数的基本性质,你能得到分式的基本性质吗?说说看!
3、运用分式的基本性质时需要注意什么?
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式
的值不变。这个性质叫做分式的基本性质。
学生归纳以下要点:①分子、分母应同时作乘、除法中的同一种变换;②所乘(或除以)的必须是同一个整式;③所乘(或除以)的整式应该不等于零。
在活动中教师要关注:
(1) 能否用数学语言表述新知识;
( 2 )学生对“性质”的运用注意事项是否理解。
设计意图:本环节设计采用循序渐进的原则,以问题为出发点,依照学生的认识规律设置一系列问题,通过学生的自学、讨论、归纳、发现,培养学生的类比、归纳能力。
(四)、训练操作 巩固新知
例2、下列分式的右边是怎样从左边得到的?
(1) (2)
学生讨论、交流、口答,老师指导、矫正。注意要暴露学生的思维过程,及时强调分式基本性质的运用。
反思:为什么(1)中有附加条件y≠0, 而(2)中没有附加条件x≠0?
练习:1、填空:(1)
反思:你是怎么想的?
2、下列各组中的分式,能否由左边变形为右边?
(1) 与 (2) 与
(3) 与 (4) 与
反思:运用分式的基本性质应注意什么?
(1) 都;(2)同一个;(3)不为零。
例3、化简下列分式:
学生先独立思考、作答 ,并安排两名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。
对问题(2),学生思考、归纳后,在小组进行交流,并综合各小组中同学的不同见解得出结论。
在活动中教师要关注:
(1) 大部分学生能否准确、熟练地完成任务;
(2) 学生能否用数学语言表述发现的规律;学生在运算中表现出来的情感与态度是否积极。
(3) 注意解题格式的强调。
强调:1、把一个分式的分子和分母的公因式约去,这种变形叫分式的约分.
2、分式约分的依据是什么?分式的基本性质
做一做:化简下列分式:(1)(2)
议一议:你对书上小颖和小明的解法有何看法?与同伴交流!
教师组织学生活动,并强调:分子和分母已没有公因式的分式叫
分式约分的注意事项:
1、当分子或分母是多项式时,应先 。
2、找公因式(数字取各数字的 ;字母取 的字母,并且要取相同字母的 次幂。)
3、约分要 ,结果要化成最简 或整式。
设计意图:通过设置以上几个问题让学生从不同角度去认识问题和解决问题,培养学生运用分式的基本性质进行分式的等值变形的技巧;掌握分式的约分的方法;会把分式化成最简分式。
(五)、课堂小结 回味反思
说说我们本节的收获吧!
1.本节课主要学习了那些知识?
2.应用分式的基本性质应注意什么?
3.化简分式我们应注意什么?
设计意图:通过这一环节,学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。
(六)、课堂小测 共同成长
化简下列分式:
设计意图:本环节考查了学生进行分式约分的能力;以便于教师及时指导学生。
(七)、布置作业 查缺补漏
必做题:课本第72页习题3.2【知识技能】
选做题:课本第73页习题3.2【数学理解】(3,4)
设计意图:作业布置注重了分层,让探究延伸到课外。
八、说板书设计:
分式的基本性质
一、 分式的基本性质
注意:1、都;2、同一个;3、不为零
二、 分式的约分
三、 最简分式
设计意图:条理清晰,重点突出,便于学生对知识的理解与巩固。
九、说教学反思:
教完本节课,我感触最深的有以下几点:
1.教学过程中我强调要学生形成积极主动的学习态度,注重学生的知识建构过程,关注学生的学习兴趣和体验。
2.注重分类、归纳、类比、转化等数学思想的渗透。
3.注重面向全体学生,从最后一名抓起。
4. 注重对学生进行过程性评价,注重评价方式的多元化。
今天我说课的内容是《分式的基本性质》。
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备
多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
1)课本第10页例2填空:
2)设计意图:例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的目的。
活动4:练习巩固拓展知识
课堂练习:
(1)课本第11页4.下列各组中的两个分式是否相等?为什么?
(2)不改变分式的值,使分子、分母里的系数变为整数:
教师展示练习学生独立思考,老师巡堂并进行个别辅导,然后,对于第1题,进行个别提问;第2题,叫两名学生到黑板演示。
设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用,并为下一节学习分式的约分做铺垫;第2题,强化训练为了培养学生用“性质”解决问题的能力。
拓展训练:
课本第11页5.不改变分式的值,使下列分式分子和分母都不含“-”号
学生组内讨论,老师巡堂参与交流,引导学生发现规律,并综合各小组的不同意见,有针对性地进行讲解,归纳出变号法则。
分式的变号法则(板书)
分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变,即:
设计意图:介绍分式的变号法则,是为了让学生结合有理数的除法法则,更深刻地理解分式的基本性质。
活动5:小结评价布置作业
小结:
1)分式的基本性质是什么?
2)运用分式基本性质时要注意什么?
3)分式变号的法则是怎样的?
展示问题,学生思考,并在老师的引导下,学生自己进行整理、归纳。
设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善。
小结完成后,为了同学能够有针对性地进行小结,我准备了三个问题:
1)这节课你学到了什么?
2)这节课给你的印象最深的是什么?
3)你如何评价你自己、同学或老师的表现?
但在课堂上,不要限制他们,让他们畅所欲言,学生会有教师想象不到的精彩。
【布置作业】
下课铃响了,我布置作业:
1、课本P65的习题4;
补充作业:
布置作业:课本第12页习题16.1第12题;
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
一、教材分析
1、教材的地位及作用
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
教学重点:理解并掌握分式的基本性质
教学难点:灵活运用分式的基本性质进行分式化简、变形
3教材的处理
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:1)了解分式的基本性质
2)能灵活运用分式的基本性质进行分式变形
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析
1、教学方法
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段
我所采用的教学手段是多媒体辅助教学法。
四、程序分析
活动1 创设情境,引入课题
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2 类比联想,探究交流
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的`目的。
活动3 例题分析 运用新知
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4 练习巩固 拓展训练
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
活动5 小结评价 布置作业
学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:(1)学生对本节课的学习内容是否理解;(2)学生能否从获取新知的过程中领悟到其中的数学方法。
设计意图:学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。