您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

高二会考数学知识点归纳五篇分享(高一会考数学知识点)

2022-06-17 09:52:00综合

高二会考数学知识点归纳五篇分享(高一会考数学知识点)

  下面是范文网小编收集的高二会考数学知识点归纳五篇分享(高一会考数学知识点),以供借鉴。

高二会考数学知识点归纳五篇分享(高一会考数学知识点)

  数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。下面就是小编给大家带来的高二会考数学知识点,希望能帮助到大家!

  高二会考数学知识点1

  考点一:向量的概念、向量的基本定理

  【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

  注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

  考点二:向量的运算

  【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

  【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

  考点三:定比分点

  【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

  【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

  考点四:向量与三角函数的综合问题

  【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

  【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

  考点五:平面向量与函数问题的交汇

  【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

  【命题规律】命题多以解答题为主,属中档题。

  考点六:平面向量在平面几何中的应用

  【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

  【命题规律】命题多以解答题为主,属中等偏难的试题。

  高二会考数学知识点2

  直线的倾斜角:

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率:

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式。

  注意:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  直线方程:

  1.点斜式:y-y0=k(x-x0)

  (x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。

  2.斜截式:y=kx+b

  直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。

  3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

  如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。

  如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。

  如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。

  4.截距式x/a+y/b=1

  对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

  5.一般式;Ax+By+C=0

  将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。

  高二会考数学知识点3

  常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

  3、逻辑联结词:

  ⑴且(and):命题形式pq;pqpqpqp

  ⑵或(or):命题形式pq;真真真真假

  ⑶非(not):命题形式p.真假假真假

  假真假真真

  假假假假真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

  高二会考数学知识点4

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.

  线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

  平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.

  (2)垂直关系的判定和性质定理

  线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

  面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

  高二会考数学知识点5

  圆柱、圆锥、圆台和球的表面积

  (1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。

  ①圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。

  圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。

  ②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为

  ③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为

  这个公式有利于空间几何体和其侧面展开图的互化

  显然,当r=0时,这个公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。

  (2)圆柱、圆锥和圆台的侧面公式为

  S侧=π(r+R)l

  当r=R时,S侧=2πRl,即圆柱的侧面积公式。

  当r=0时,S侧=rRl,即圆锥的面积公式。

  要重视,侧面积间的这种关系。

  (3)球面是不能平面展开的图形,所以,求它的面积的方法与柱、锥、台的方法完全不同。

  推导出来,要用“微积分”等高等数学的知识,课本上不能算是一种证明。

  求不规则圆形的度量属性的常用方法是“细分——求和——取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。

  高二会考数学知识点归纳五篇分享