您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

九年级数学上册教案

2022-06-06 09:55:00综合
  • 相关推荐

九年级数学上册教案

  下面是范文网小编收集的九年级数学上册教案,供大家品鉴。

九年级数学上册教案

  通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.一起看看九年级数学上册教案!欢迎查阅!

  最新人教版九年级数学上册教案1

  1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

  2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

  重点

  通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

  难点

  一元二次方程及其二次项系数、一次项系数和常数项的识别.

  活动1 复习旧知

  1.什么是方程?你能举一个方程的例子吗?

  2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

  (1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

  3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

  A.0    B.1    C.2    D.3

  活动2 探究新知

  根据题意列方程.

  1.教材第2页 问题1.

  提出问题:

  (1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

  (2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

  (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

  2.教材第2页 问题2.

  提出问题:

  (1)本题中有哪些量?由这些量可以得到什么?

  (2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

  (3)如果有x个队参赛,一共比赛多少场呢?

  3.一个数比另一个数大3,且两个数之积为0,求这两个数.

  提出问题:

  本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

  4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

  活动3 归纳概念

  提出问题:

  (1)上述方程与一元一次方程有什么相同点和不同点?

  (2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

  (3)归纳一元二次方程的概念.

  1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

  2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  提出问题:

  (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

  (2)为什么要限制a≠0,b,c可以为0吗?

  (3)2x2-x+1=0的一次项系数是1吗?为什么?

  3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

  活动4 例题与练习

  例1 在下列方程中,属于一元二次方程的是________.

  (1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

  (4)2x2-2x(x+7)=0.

  总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

  例2 教材第3页 例题.

  例3 以-2为根的一元二次方程是(  )

  A.x2+2x-1=0 B.x2-x-2=0

  C.x2+x+2=0 D.x2+x-2=0

  总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

  练习:

  1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

  2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

  (1)4x2=81;(2)(3x-2)(x+1)=8x-3.

  3.教材第4页 练习第2题.

  4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

  答案:1.a≠1;2.略;3.略;4.k=4.

  活动5 课堂小结与作业布置

  课堂小结

  我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

  作业布置

  教材第4页 习题21.1第1~7题.

  最新人教版九年级数学上册教案2

  第1章反比例函数

  1.1反比例函数

  教学目标

  【知识与技能】

  理解反比例函数的概念,根据实际问题能列出反比例函数关系式.

  【过程与方法】

  经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.

  【情感态度】

  培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.

  【教学重点】

  理解反比例函数的概念,能根据已知条件写出函数解析式.

  【教学难点】

  能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知

  1.复习小学已学过的反比例关系,例如:

  (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

  (2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

  2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

  【教学说明】对相关知识的复习,为本节课的学习打下基础.

  二、思考探究,获取新知

  探究1:反比例函数的概念

  (1)一群选手在进行全程为3000米的比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.

  (2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  (4)平均速度v是所用时间t的函数吗?为什么?

  (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

  【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.

  三、运用新知,深化理解

  1.见教材P3例题.

  2.下列函数关系中,哪些是反比例函数?

  (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

  (2)压强p一定时,压力F与受力面积S的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

  分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.

  解:

  (1)a=12/h,是反比例函数;

  (2)F=pS,是正比例函数;

  (3)F=W/s,是反比例函数;

  (4)y=m/x,是反比例函数.

  3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

  解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.

  四、师生互动、课堂小结

  先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.1”中第1、3、5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  最新人教版九年级数学上册教案3

  1.2反比例函数的图象与性质

  第1课时反比例函数的图象与性质(1)

  教学目标

  【知识与技能】

  1.会用描点法画反比例函数图象;2.理解反比例函数的性质.

  【过程与方法】

  观察、比较、合作、交流、探索.

  【情感态度】

  通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.

  【教学重点】

  画反比例函数的图象,理解反比例函数的性质.

  【教学难点】

  理解反比例函数的性质,并能灵活应用.

  教学过程

  一、情景导入,初步认知

  你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?

  【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.

  二、思考探究,获取新知

  探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.

  (1)列表:取自变量x的哪些值?

  x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

  (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

  (3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  思考:

  (1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?

  (2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:

  (1)函数图形的两个分支分别位于哪些象限?

  (2)在每一象限内,函数值y随自变量x的变化是如何变化的?

  【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.

  探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:

  (1)可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;

  (2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.

  【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.

  探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?

  【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.

  【归纳结论】反比例函数y=(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-(k≠0)的图象关于x轴或y轴对称.

  【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.

  

  九年级数学上册教案

相关热搜