年安徽教师资格考试:初中数学说课教案《正数和负数》3篇(人教版七年级正数和负数教案)
下面是范文网小编整理的年安徽教师资格考试:初中数学说课教案《正数和负数》3篇(人教版七年级正数和负数教案),供大家参考。
正数和负数
(第一课时)
一、教学目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
二、教学重点、难点
1、正确区分两种不同意义的量。
2、两种相反意义的量
三、教学过程
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
材料:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高米,体重千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%?
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生活动:思考,交流。)
总结:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗?
(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流,从而引入了负数:一种前面带有“-”的新数。问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?(这阶段主要是让学生学会正数和负数的表示.)
让学生带着这些问题看书自学,然后师生交流.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含
两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数
量,而且是同类的量.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?
请举例说明.
四、课堂练习:教科书第5页练习
五、课堂小结:
围绕下面两点,以师生共同交流的方式进行:
1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范
围就扩大了;
2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以
前学过的0以外的数前面加“-”。
六、作业
教科书第7页习题 第1,2,4,5(第3题作为下节课的思考题。)
七、教学后记:
正数和负数
(第二课时)
一、教学目标:
1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发
学习数学的兴趣。
二、教学重点、难点:
1、正数、负数概念的理解。
2、了解和表示向指定方向变化的量。
三、教学过程:
1、知识回顾与深化
(1)、回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了
区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这
就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负
数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?(学生思考并讨论)
(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易
理解,可视学生的讨论情况作些启发和引导。)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度
用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度
是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于
零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?
“数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除
了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。
(举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.)
分析问题,决问题
问题2:教科书第6页例题
说明是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表
示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以
重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢? 等等。
三:巩固练习:教科书第6页练习
四:阅读思考:教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论
交流
五:小结与作业
六:课堂小结:问题的形式,要求学生思考交流:
1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2、怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指
定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变
化的量规定为负数.)
七、作业、教科书第7页习题第3,6,7,8题
教学后记:
正数和负数教案
一、教学目标
1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
二、教学重点和难点 重点:正负数的概念 难点:负数的概念
三、教具
投影片、实物投影仪
四、教学内容
(一)引入
师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4??这些数,我们把它叫做什么数?
生:自然数
师:为了表示“没有”,又引入了一个什么数?
生:自然数0 师:当测量和计算的结果不是整数时,又引进了什么数?
生:分数(小数)
师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面米,我市某天最高气温是零上8摄氏度。请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:
1、1正数与负数]
(二)新课教学
1、相反意义的量
师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1)汽车向东行驶千米和向西行驶千米;(2)气温从零上6摄氏度下降到零下6摄氏度;(3)风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义
请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数
师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢? 由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。
生:(1)如果向东行驶千米记作+千米(读作正千米),那么向西行驶千米记作-千米(读作负千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。
师:像+6,+10,+等前面放有“+”号的数叫做正数,像-6,-5,-等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗? 生:(讨论后得出)不能。
师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
(三)、练习
1、学生完成课本第4页练习1,2,3
2、补充练习
(1)在-2,+,0,-,11中,正数是,负数是 ;
(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?
(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼??就表示为0,1,2??那么地下第二层表示为。
(四)小结
1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
(五)作业
见作业节作业。
认识负数
河南省许昌市实验小学 张红娜
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例
1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知
道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联
系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学
态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有
赢??你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起
来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了千克,小华轻了 千克。
④ 一个蓄水池夏季水位上升
米,冬季水位下降
米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补
充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
??
(3)展示交流。
??
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:? ?)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况
(课件出示)。
哈尔滨: -15 ℃~-3 ℃
北京: -5 ℃~5 ℃
深圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表
示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)
为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负
数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重
新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数
学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百
年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作
_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下
150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪
个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
5.“净含量:10±”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
初中数学说课教案:《实际问题与一元一次不等式》
张平
一、说教材:(我对教材的认识)
1、说课堂教学指导思想及课程标准:
根据新课标的指导思想:学有用的数学和应用数学的思想,在课堂教学活动中,要充分体现学生的主体作用和教师的主导作用,培养学生的全面发展和动手探究问题的能力与协作精神作为指导设计本课教案。
2、说教材地位、特点、作用。
本册书的数学问题基本都来自于学生身边熟悉的事情。体现了数学来源于生活又应用于生活的特点。本课内容“实际问题与一元一次不等式”,是在学习了一元一次方程及不等式的基本性质之后学习,这一部份内容又是后继学习的基础,并且在实际生活中有着广泛的应用,起承上启下的作用,所以非常重要。本节内容共3课时,本课为第一课时。
3、学生情况分析:
初一学生比较的活泼,参与的意识较浓,对于解一元一次方程较为熟练;
但在理性分析问题的能力较弱,对生活问题转化为数学问题的转化能力——建模思想较差。
4、说教学目标:
鉴于上述原因,参照新课标要求确定本节课的教学目标、重难点如下:
a知识目标: ①能够列一元一次不等式解决具有不等关系的实际问题;
②进一步体验不等式的解法;
b 能力目标:①发展学生由实际问题转化为数学问题的能力;提高计算能力。
②培养学生对一类问题建立一种数学模型,类比以及分类的数学思想。
c 情感目标:①强化用数学的意识从而乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活
动中发挥积极作用。
②通过探索数学问题,增强学生之间的配合,敢于面对数学活动中的困难,体验解决问题的成功感。
重点:①由实际问题中的不等关系列出不等式;
②探究一元一次不等式的解法;
难点:列一元一次不等式描述实际问题中的不等关系。
二、说教法与学法指导
1、说教法
课堂教学是一个师生互动的发展过程,结合本节课实际情况,我采取了①观察,分析讨论——师生互动,②在解法探究中采取由特殊到一般的归纳方法,灵活运用;让学生体验知识的发生,发展过程,并且采用多媒体教学,有利于学生讨论活动的开展。
2、学法指导
学会用一元一次不等式模型来解决问题,鼓励努力克服困难;多角度认识问题,学会探究问题的方法。
三、说教学程序
1、提出问题,分组讨论,交流(我把这一活动分解为4个小问题)(大约15分钟)
2、由上面的问题出现的不等式而探究不等式的解法,让学生利用不等式的性质类比一元一次方程的解法总结不等式的解题过程(约5分钟)
3、巩固解题方法,给出2个简单的不等式,让学生在黑板上来做(约5分钟)
4、拓展与发展,给出问题2(第三个活动)没有分解成小问题(指导学生先独立,后合作探究)建模的思想(大约12分钟)
5、小结:让学生谈谈对本节课的认识和收获(大约3分钟)
不同层次的学生会有不同的认识,我将作恰当的补充。
让学生思想感情上的升华——克服困难的品质。
四、说板书
我把问题1的解题过程分步书写,让学生能从中体会研究问题的方法,让学生的知识认识上升到理性认识
五、说作业:P1401—4,9 评价上课效果,对本课的内容巩固,反馈作用