求小数的近似数教学反思12篇 四年级下册求小数的近似数教学反思
下面是范文网小编整理的求小数的近似数教学反思12篇 四年级下册求小数的近似数教学反思,以供参考。
学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。
然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:
1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。
2、前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。
针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有大小的改变数的大小;
3、多讲多练,在不断的重复练习过程中,让学生自悟。
教师明确小数的近似数的方法与整数的近似数相似。要用四舍五入法保留小数位数。要注意保留小数位数越多,精确程度越高这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。
已学内容:求一个小数的近似数,把不是整万或整亿的数改成用“万”或“亿”作单位的数。
反思内容:学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。
然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:
第一:以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。
第二:前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。
针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有改变数的大小。
第三,多讲多练,在不断的重复练习过程中,让学生自悟。
《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。
而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。
本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法——四舍五入法,并举例说明了具体做法,让学生明确了整数的尾数是改写成“0”。在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。我个人认为本节课最成功之处就是让学生比较了小数与整数近似数的方法,学生在掌握了新知的同时,对学过的知识也做了较好的复习。
教学目标:
1.结合豆豆测量身高这一现实情境使学生知道求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。
2.能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
教学重点:求小数的近似数的方法。
教学难点:理解表示近似数时,小数末尾的0不能去掉。
根据学习目标,结合课本内容,我制定了两个学习任务:
1.探究求小数近似数的方法。
2.比较理解近似数1和1.0。
下面就整个教学过程的设计进行简单的分析:
在激情导课环节,我先创设菜场买菜付钱情境,又结合课本的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。然后回忆整数的近似数方法,为学习新知做铺垫。
在民主导学环节,任务一是让学生探究求小数近似数的方法。学生先自学,然后在小组内交流学懂的知识。最后运用学会的方法解决问题。进行展示时,主要依靠小组,组间交流互动。让学生总结出求近似数的方法。当学生还有表达不完整的时候,我再进行补充小结。在这里,我主要强调“精确”到某一位的另一种表达方式,即省略这一位后面的尾数。以帮助学生进一步理解求近似数的方法。关于近似数末尾的0为什么不能去掉,为了帮助学生理解这个问题,突破本节课的难点,我设计了任务二比较理解。
. ≈1 ( )
. ≈1.0( )
1.思考有几种填法。把能填的数写在后面的括号里。
2.小组同学说一说近似数1和1.0的不同之处。
在学生展示交流完毕,我又出示了数轴图,目的是让学生直观的感受到近似数1和1.0意义的不同,精确程度的不同,1.0比1更精确。由此得出“表示近似数时,小数末尾的0不能去掉”。
在检测导结环节我采用了课堂检测单,检测题围绕学习目标,检测学生对当堂知识的理解。第二题是结合生活实际提出,目的`是再次让学生感受到生活中的数学,培养学生做一个生活的有心人,知识的发现者。
在进行小组交流时,由于一开始没有调动起学生的积极性,课堂显得有点沉闷。可是在后面的学习中,学生逐渐的打开了思路,积极主动的参与到学习中来。不但自主探索到求近似数的方法,而且理解了为什么表示近似数时末尾的0不能去掉。可以说两个任务的呈现都比较合理,有可操作性,引导学生完成学习目标的方向非常明确。任务二的呈现稍显难度,但这也是这堂课的亮点。采用数形结合的方法,为学生直观的理解知识搭建了合理的平台。
在以后的教学中,我觉得应该在钻研教材方面下大功夫,只有这样才能更好的用教材,呈现合理的学习任务。对学生学习方法的培养也是课堂教学的重要任务,我们一定要努力处处为学生着想,时时为学生服务,课课让学生精彩!
教材解读:
本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。
教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。
教学重点:求小数近似数的方法。
教学难点:理解保留的小数位数越多,求出的近似值越精确。
目标预设:1、会根据要求用“四舍五入”的方法求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。
学生经验:学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。
教学准备:小黑板
教学过程:
一、创设情景、揭示课题
昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?
学生回答后,问这个数据是怎么得到的?
今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)
二、复习铺垫
1.把下面的叙述换一种说法:
(1)1999年全国有小学生145371600人。也可以说:1999年全国大约有小学生(万)人。
(2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。
2.下面的□里可以填上哪些数字?32□645≈32万 47□05≈47万
(1)独立完成。
(2)校对答案。
(3)说说求近似数的方法——四舍五入法。
板书:求近似数一般用四舍五入法
三、自主探究、合作交流
(一)、出示例题:
例1.地球和太阳之间的平均距离大约是1.496亿千米。
接着明确要求:
精确到十分位是多少亿千米?
精确到百分位是多少亿千米?
精确到整数是多少亿千米?
然后让学生进行独立思考,发表意见,说出结果及想法。
1、精确到十分位
思考:精确到十分位就是要保留几位小数?
(1)学生独立探索。
(2)小组交流。
(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。
1.496亿千米≈1.5亿千米
讲解:精确到十分位,就是保留一位小数。
2、精确到百分位
(1)独立完成
(2)组织交流。
精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。
1.496亿千米≈1.50亿千米
问:近似数1.50末尾的0能去掉,为什么?
学生讨论:明确:不能去掉,去掉就不符合要求了。
教师总结:0不能去掉,它起到占位的作用。
3、比较精确度。
问:1.5和1.50哪个更精确?
学生讨论后汇报想法。
想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。
想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。
4、精确到整数
(1)独立完成
(2)组织交流。
精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,
省略小数点后的尾数。
5、教学“试一试”
学生独立解决,集体订正。
引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。
(二)小结:
教师提出问题:求小数近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
(1)要根据题目的要求取近似值,
如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。
(三)、教学“练一练”
学生独立解决,集体订正。
电评时引导学生在两方面进行比较:
(1)按不同精确要求求近似数的比较。
(2)取一个数的近似数与把一个数改写
成以“万”或“亿”作单位的小数的方法的比较。
第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。
四、练习巩固,拓展应用
1.填空:
① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……
②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.
2.判断题(用手势表示“√”或“×”)
①3.97精确到十分位是4.0。()
②把9.996精确到百分位是10.00。()
③8和8.0的大小相等,它们的精确度也相同。()
④在表示近似数时,小数末尾的0应该去掉。()
3.“练习七”第五题。
(1)学生独立完成
(2)教师检查反馈。
说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。
4、“练习七”第6题。
(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。
(2)独立填写后再组织汇报交流。
5、“练习七”第7~8题。
学生独立审题并解答。
6、解决前面的问题。在实际生活中,9.547元≈()元
5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。
五、课堂作业:
“练习七”第4题。
六、收获提炼
今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?
七、课后反思
1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。
2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。
因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。
既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
1.从生活出发,让学生感受数学与实际的联系
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
2.注重过程,让学生在探索中学习
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
教材是用一位小朋友的身高的近似数来引入新课的:豆豆的身高是0.984米,小芳说约是0.98米,小明说约1米,通过说法的不同引出争论。我先和孩子们一起复习了求整数近似数的方法——四舍五入法,为新课做好准备和铺垫。然后通过类比的方法,以生活中常遇到的购买商品这项事情为例,引出语句“省略十分位、百分位、千分位……后面的尾数”,接着让学生试着说出这些语句还可以怎么说,及时小结还可以说成“精确到什么位”、“保留几位小数”,最后让学生们自己看书上的例题,并做相应的习题。
整节课下来,我觉得比较成功的地方有以下几点:第一,引导学生理解保留几位小数的含义:保留一位小数就是精确到十位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……我是尽量让学生自己说出这些语句的,小结后还让学生熟读,再闭上眼背诵。第二,让学生自主探索“保留整数”的含义。在让学生独立阅读课本以后,我让学生试着把豆豆的身高保留二位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出规律。第三,让学生知道为什么要学习求小数的近似数。这也是我比较看重的,要区别“填鸭式”教学,这个环节最有说服力。
不足之处也很明显:虽然课堂上孩子们踊跃发言,但是,这样的课堂进程对我这样的课堂驾驭能力差的老师是个负担,使练习量大打折扣,所以作业情况有点两极分化,还好,作业完成得不太好的孩子都是日常生活中听说反应比较缓慢的,约占全班人数的十分之一。他们出现较多的问题是不能准确写成符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练,可能因为前几节课刚讲授完“统一单位”,没有给他们好好进行小复习。小数这个单元内容比较多,更需要及时复习。通过教参,我还发觉了遗漏了一个环节:“保留不同位数的小数求得的近似数是否相同?如果不同,哪个近似数会更精确一些?”
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
成功之处:
1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。
4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。
不足之处:
1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。
2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。
再教设计:
1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。
2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
成功之处:
1、复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2、联系生活实际,体会数学与生活的联系。结合主题图,创设了同学们测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把盛维维的身高1.584米精确到分米、厘米。这样把学习求一个小数的近似数的知识还原与生活,应用与生活。
3、深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到个位。
4、重点比较,保留整数的1和保留一位小数1.0的区别。通过在数轴上的取值范围,使学生体会到保留整数1的取值范围在0.5~1.4,保留一位小数的1.0的取值范围在0.95~1.04,保留整数的1和保留一位小数1.0虽然大小相等,但是精确度不一样,保留的小数位数越多,就越接近准确值,也就更精确。
不足之处:
1、练习时间有点少。
2、个别辅导不够。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在菜市场买菜时,总价是8.53元,而售货员只收8元5角钱,这就是在求8.53这个小数的近似数。在创设情境环节,也结合生活实际,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,让学生感受数学与实际的联系。这样很自然地引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,再出题让学生说出把7.85元精确到元、精确到角分别是多少钱,这样把学习求一个小数的近似数的知识还原与生活,应用与生活。在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.664≈0.66后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.974≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。