一元二次方程数学教学反思12篇(初中数学二元一次方程组教学反思)
下面是范文网小编分享的一元二次方程数学教学反思12篇(初中数学二元一次方程组教学反思),供大家参阅。
一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。
列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。
在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。
总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。
《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。
这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。
数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。
问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。
看过九年级数学二次函数与一元二次方程教学反思的还看了:
1.九年级数学二次函数与一元二次方程同步练习题
2.九年级数学教学工作反思
3.九年级数学实际问题与二次函数同步练习题
4.一元二次方程初三数学单元试题附答案详解
这是一节复习一元二次方程解法的课,主要通过复习一元二次方程的解法,了解学生对知识的掌握情况,加强对学生的学法指导。
本章内容中重点为一元二次方程的解法和应用。我将复习设为两节,第一节重点讲解法。思路:以学生为主体,注重学生自我发现,了解自己的不足,同时,注意加强运算。总的设计思路较好,过程中有一个地方费时较多,主要是我没有吃透“课标”,对于一元二次方程公式法的推导过程不应让学生推导,因为在此费时过多,所以最后的小测试没来得及做。另为,在练习中解方程时,由于时间关系,没有让学生比较,而是由我代办,这样效果反而不好。
通过复习,我感到,在复习时一定要好好研究课标,吃透课标。另为,注意学生的分析,教师不要代办太多。
看过九年级数学一元二次方程的解法教学反思的还看了:
新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。
这节课是“列一元二次方程解应用题(3),讲授在营销问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,体会数学在现实生活中的作用。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、课前准备的内容了解一元二次应用题的步骤,本节课的学习需准备的两个关系式。设计三个列代数式的题为学习例题时降低难度。
二、本节课例题,是营销问题中的一个典型例题,我在引导学生解决此题时,不仅关注结果更关注过程,让学生养成良好的解题习惯。
三、通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示。
2、在激励评价学生方面做胡还不够,例如学生在解决自主探究最后一个题目时,有同学利用第三种方法很巧妙,当时没有给予学生很好的激励及评价
3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表
从本节课开始授一元二次方程的概念、解法及其应用。其中本堂课关于一元二次方程概念的介绍,其一般形式的写法是后续内容的基础,虽然简单但非常重要。
关于一元二次方程的概念的引入。我对课本做了两点变动:一是增加一例趣味性故事,引出数学问题,从而列出方程;二是将课本上关于生产总值的例子改成中考升学考上重点中学人数问题。以上变动主要是基于以下考虑:一是创设情境,激发学生的学习兴趣,又能学习从实际问题中归纳出数学模型;二是课本上的生产总值问题感觉离学生比较遥远。反思本节课的教学,我觉得有以下不足:
引入概念时的例子太多,有点难,在解应用题方面花费了一些时间,有点“喧宾夺主”,课前的例子应尽可能的简单,只要让学生能列出一元二次方程即可。
对于一元二次方程的一般形式,二次项系数、一次项系数、常数项这些内容,我觉得时间还比较少,应多加练习,特别是对后进生,如果一元二次方程已经写成一般形式,他们找二次项系数、一次项系数、常数项没有困难。如果需要进一步化简整理成一般形式,他们开始出错。问题出在他们基础没打好,化简整理过程中出现诸如移项时项的符号出错的问题,应多加练习指导。
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重中难点的体现。
在本节课的活动1中,通过实际问题引入学生熟悉的一元一次方程,让学生掌握利用方程解决问题,从而顺利过渡到后面的问题。活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。活动3意在强化学生所学知识,并运用到实际问题中去。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。
1、这一节课的主要内容是要求学生掌握一元二次方程的定义,定义主要从这两个方面来掌握,首先等号的两边是整式,且只含有一个未知数,其次未知数的最高次数是2。要是单纯从知识点上来看的话,这一节课的内容很少,教师可以用很短的时间讲完这节课,但是教材的设计是从实际问题出发,要求学生先列方程,将实际问题的方程化为一般的形式后去观察方程的形式,通过观察找到几个方程的共同点,再由学生总结一元二次方程的定义,表面上看教材的安排很罗嗦,其实这样安排的好处就是将难点分散了,因为一元二次方程这一章有一个教学难点就是列方程解应用题,在平时的教学中将难点分散对于学生的学习应该有很大的帮助。
2、在求一元二次方程的各项系数的时候,有一个地方没有处理好,本来按照习惯一般是将二次项系数化为正数,但是在解题中就算二次项系数是负数,给出的答案也是正确的,这样的问题最好是给出方程的一般形式后,叫学生来求各项系数比较好一点。
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根。
在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的'数值符合条件,可以利用公式求根、
学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、
其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:
本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。
例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。
课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。
需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。
一元二次方程一课,感触颇深。下面谈一下自己的几点体会:
一、本节课,知识的呈现作了重大调整,不是以讲解为主方式也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。
二、以问题为主线,解放学生的身心,激发学生的灵感;体现“自主-----合作-----探究”的学习方式,培养学生小组合作的学习能力,让学生感受到过程是自己亲身体验的,结论是自己发现的,知识是自己主动获取并学会的,能够增强学生对学习的信心,再次突出本节课的亮点。
三、把课堂真正的还给学生。我参与,我快乐,我是课堂的主人。放手让学生有话可说,有疑好争,为学生深入思考、积极探索提供机会、做到师生互动、生生互动,在平等、民主、合作的氛围中分享成功的快乐。
四、备情绪,激发兴趣和学习动力,把情绪调整到高涨状态。本节课教师采用多种激励语言,如心动不如行动,跃跃欲试,不如试一试。不怕你说什么,就怕你什么也不说等激发学生兴趣,调动学习动力,把学生的学习情绪调整到比较理想的、十分高涨的状态。
总之,本节课用全新的理念,全新的教学模式,给我全新的感受,为我以后的教学指名了前进的方向。努力实践,打造精品课堂。
学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。
方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。
一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生很容易理解。这里我通过两个实际问题,一个是求长方形的面积问题,另一个增长率问题,让学生经历了二次项的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的练习,如若关于x的方程(m+1)x|m|+1-2x+3m=0是一元二次方程,求m的值,学生的出错率也不低;如果再问m为何值时这个方程是一元一次方程,正确率就会很低,所以可以说学生对此类考察方程概念的题型掌握得还不是很好。本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。本节的第三个知识点就是一元二次方程根的概念,课件上关于这个知识点设置了两个练习:
练习1:判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根?
练习2:已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值。
对于这两个练习学生在课堂上都回答得很快,但在课后的作业中发现了一个非常严重的问题,就是学生他知道要用“代入检验法”来判断一个值是不是方程的根,但对于如何书写这个判断过程却没有任何思绪,以致于在作业中很多的同学或是直接下结论或是在判断时都没有分开“左边=”“右边=”,这块书写的过程是我教学的一个疏忽,所以很多学生没有掌握。此外,对于“一元二次方程的根”这个知识还有一类这样的提高题,如:已知一元二次方程ax2+bx+c=0,若满足a+b+c=0,4a-2b+c=0你能通过观察知道这个方程的根吗?实际上这类题目中有着一种逆向的思维,所以学生不是很容易理解和掌握。