高中数学必修四教学设计3篇 必修4数学教案
下面是范文网小编分享的高中数学必修四教学设计3篇 必修4数学教案,供大家阅读。
教学准备
教学目标
1、 知识与技能
(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、 过程与方法
通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、 情感态度与价值观
通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点
重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点: 各种性质的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业: 习题1-7第4,5,6题.
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业: 习题1-7第4,5,6题.
板书
略
一、向量的概念
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
2、叫做单位向量
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:几何表示法、字母表示法、坐标表示法
三、向量的加减法及其坐标运算
四、实数与向量的乘积
定义:实数 λ 与向量 的积是一个向量,记作λ
五、平面向量基本定理
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共线/平行的充要条件
七、非零向量垂直的充要条件
八、线段的定比分点
设是上的 两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点
定比分点坐标公式及向量式
九、平面向量的数量积
(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
(3)平面向量的数量积的坐标表示
十、平移
典例解读
1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
其中,正确命题的序号是______
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
4、下列算式中不正确的是( )
(A) AB+BC+CA=0 (B) AB-AC=BC
(C) 0·AB=0 (D)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1
7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )
(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5
(C)2x-y=0 (D)x+2y-5=0
8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
(A)-5 (B)5 (C)7 (D)-1
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
(A)2 (B)0 (C)1 (D)-1/2
16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)
17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量
教学准备
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点
.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
教学过程
一、练习讲解:《习案》作业十三的第3、4题
3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是
(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
(1) 选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值
(精确到0.001).
(2) 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?
(3) 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。